

Introduction

« Business process: “chain of events, activities and decisions” [A],
“a set of activities that are performed in coordination in an
organizational and technical environment” [B]

 Business process monitoring: tools and techniques to
determine:
 |f activities are correctly executed
* |f dependencies among activities are respected
« Artifact-driven process monitoring: a novel technigue for
business process monitoring, that allows to:
« Autonomously collect information
« Determine violations at runtime
« Without human intervention

[A] Dumas, M., La Rosa, M., Mendling, J., Reijers, H.: Fundamentals of Business Process Management
[B] Weske, M.: Business Process Management

© Giovanni Meroni 2018 POLITECNICO MILANO 1863

* Motivations
« ldea: artifact-driven process monitoring

« Contributions:
— E-GSM modeling language
— Method to configure smart objects
— Monitorabilty assessment and improvement
— SMARTIfact monitoring platform

 Dissemination
 Validation
 Conclusion & future work

© Giovanni Meroni 2018 POLITECNICO MILANO 1863

POLITECNICO
MILANO 1863

Motivations

« Many intra-organizational processes are becoming multi-

party:
— Portions of a process are outsourced to external
organizations

— Companies interact with goods without owning them
« QOrganizations are interested in monitoring the execution
of multi-party processes as a whole

— No guarantee that outsourced activities are performed as
agreed

— No guarantee that goods given to other companies are
manipulated as agreed

© Giovanni Meroni 2018 POLITECNICO MILANO 1863

Motivating example

. . A Yo o bal
e i YN "T.
B - N L -:‘\]
P /2.« 'Bergamo |
mlmt:'qe: ' ,:C

Trezzo™ | |
sullAdda’_fo—l L

A4 A

Monza /1=

¥4
al
~—~ Alessandria
= =9 . -

-4 -

© Giovanni Meroni 2018 POLITECNICO MILANO 1863

Motivating example

E
()
—
3 e N
o Fill in f’ ‘) Attach
“é container — container
1] Manufacturer portion Truc%ched Manufacturer portion
= started manufI cturer ended
| t
| o ’
I }
I I
(| . . . R
| | Drive to inland terminal
! I
: | Travel on
| | highway
|
O v AN
Drive to Destination (}
5 manufacturer reached " =)
= Carrier portion Truck reached Container attached Truck feached Comer Carrier portion
P . .
8 started manufacturer to truck Inland ferminal deln1ered ended
| |
I |
I |
2\ I |
. I(—])\ : J
\=)/ f |
N— | I
Container ¢verheated I |
@ I |
Process failed | I
L '
I |
___ J
(I
I
___________________________ J

) Inspect Detach
goods container

Terminal portion Truck reached Container Terminal portion
started inland terminal delivered ended

@<-1---

Inland terminal
/I\

© Giovanni Meroni 2018 POLITECNICO MILANO 1863

Problem statement

« Monitoring multi-party processes is challenging
The process cannot (always) be interrupted
Human operators may not provide feedback

/ Execution \ Monitoring
) —| O] X - |8 X

Task List Alerts
Inst:
Assigned tasks Active tasks ® dd , monitor gh alte d
Task A (instance 1 TaskAlinstanced

@ Instance 8: completed
Task B (instance 2 Task B (instance 5 Service PrOVldel"S sssssss fully
Task A (instance 3 verride process model BPMS

l\.\l X
l\‘ l\‘ Mod fications Activity start/end
\’\.l\’\.l\’\ on the goods nctifioations
g liEs

Activi tystart/e nd
noti f cations
ooooooooooooo

Operator’s Organization’s Manager’s
Good O t . . P
00ds perator terminal BPMS workstation rocess manager
i3
£e

Start Stop,
Activity-centric process model

© Giovanni Meroni 2018 POLITECNICO MILANO 1863

POLITECNICO
MILANO 1863

ldea: artifact-driven process monitoring

Idea: artifact-driven process monitoring

« (Goods participate in multi-party processes

— Goods belong to a specific organization

— Goods have visibility on activities

— The conditions of the goods can be altered by organizations
« Objects participating in a process are named artifacts

« (Goods can be seen as artifacts
— For our purposes, goods = artifacts

 Idea: Artifact-driven process monitoring [1]
— Monitoring is directly performed on the artifacts
— The artifact “knows” when its conditions change
— The artifact “knows” when activities are executed

[1] Meroni, G.: Integrating the Internet of Things with Business Process Management: A Process-aware
Framework for Smart Objects. In: CAIiSE 2015 Doctoral Consortium

© Giovanni Meroni 2018 POLITECNICO MILANO 1863

Objectives

« Exploit the Internet of Things to monitor processes
« Make objects aware of the process
« Perform monitoring transparently and autonomously

Execution
) Monitoring
e ‘4 — | 0| X
> > Process execution status

%=

Operator Goods Manager’s

. Process manager
workstation g

Artifact-centric process mode

© Giovanni Meroni 2018 POLITECNICO MILANO 1863

Contributions

 Extended-GSM (E-GSM), a declarative language to
autonomously monitor business processes

« A method to configure smart objects for artifact-driven
monitoring

« Atechnique to formalize, assess and improve the
monitorability of a process

« SMARTIfact, an artifact-driven monitoring platform prototype

© Giovanni Meroni 2018 POLITECNICO MILANO 1863

POLITECNICO
MILANO 1863

Contributions

Extended-GSM modeling language

Limitations of activity-centric languages

« Activity-centric languages are unsuited for artifact-driven
process monitoring:

— Execution order must strictly adhere to the process definition

— An orchestrator must explicitly starts or ends activities
 Artifact-centric languages overcome these limitations [2]

— Only what is explicitly stated in the model is constrained

— Everything else is allowed

— Guard-Stage-Milestone is a good starting point

[2] Baresi, L., Meroni, G., Plebani, P.. A GSM-based approach for Monitoring Cross-Organization Business
Processes using Smart Objects. In: BPM 2015 Workshops.

© Giovanni Meroni 2018 POLITECNICO MILANO 1863

Extended-GSM overview

 GSM provides the following constructs:
— Data Flow Guards to determine task activation
— Milestones to determine task termination
« E-GSM adds these additional constructs:
— Process Flow Guards to define the expected process flow
— Fault Loggers to determine if a task is unsuccessfully executed

Datzﬂaor\/(;/ Milestone
Process Flow Stage Fault Logger
Guard

© Giovanni Meroni 2018 POLITECNICO MILANO 1863

Process monitoring perspectives

 E-GSM allows to monitor processes with respect to three
orthogonal perspectives:

— Execution status:
* unopened
* opened
« closed

— Execution outcome:
* regular
 faulty

— Execution compliance:
* ontime
« out of order
« skipped

© Giovanni Meroni 2018 POLITECNICO MILANO 1863

Process monitoring perspectives

 E-GSM allows to monitor processes with respect to three
orthogonal perspectives:

— Execution status:
* unopened
* opened
« closed

— Execution outcome:
* regular
 faulty

— Execution compliance:
* ontime
« out of order
« skipped

© Giovanni Meroni 2018 POLITECNICO MILANO 1863

Process monitoring perspectives

 E-GSM allows to monitor processes with respect to three
orthogonal perspectives:

— Execution status:
* unopened
* opened
« closed

— Execution outcome:
* regular
 faulty

— Execution compliance:
* ontime
« out of order
« skipped

© Giovanni Meroni 2018 POLITECNICO MILANO 1863

Process monitoring perspectives

 E-GSM allows to monitor processes with respect to three
orthogonal perspectives:

— Execution status:
* unopened
* opened
« closed

— Execution outcome:
* regular
 faulty

— Execution compliance:
* ontime
« out of order
« skipped

© Giovanni Meroni 2018 POLITECNICO MILANO 1863

POLITECNICO
MILANO 1863

Contributions

Method for configuring smart objects

Configuring smart objects for artifact-driven monitoring

The adoption of E-GSM is not straightforward
— Artifact-centric languages are difficult to model
— Processes may already be modeled in BPMN
— Modelers don’t want to do the same task twice
Multiple Smart Objects required to monitor the process

Smart Objects may participate in a portion of the process

— Information exchanged before/after that portion is useless
We propose a method to easily configure smart objects [3] [4] [5]

[3] Baresi, L., Meroni, G., Plebani, P.: Using the Guard-Stage-Milestone Notation for Monitoring BPMN-based
Processes. In: Enterprise, Business-Process and Information Systems Modeling 2016

[4] Meroni, G., Di Ciccio, C., Mendling, J.: Artifact-driven process monitoring: Dynamically binding real-world
objects to running processes. In: CAiSE-Forum-DC 2017

[5] Meroni, G., Baresi, L., Montali, M., Plebani, P.: Multi-party business process compliance monitoring
through loT-enabled artifacts. In: Information Systems. Volume 73 (2018)

© Giovanni Meroni 2018 POLITECNICO MILANO 1863

Configuring smart objects for artifact-driven monitoring

« Input: BPMN collaboration diagram
* Output:

— rules to dynamically bind and unbind smart objects
E-GSM models to monitor:
* When activities composing the process are performed
» |f the conditions of the smart object evolve as expected

Produce E-GSM models and binding criteria

BPMN

collaboration diagram:

collaboration diagram
with artifacts

Enrich BPMN

Foreach | ..~
artifact

Enriched BPMN :
collaboration diagram :

Derive BPMN
artifact-oriented
process view

© Giovanni Meroni 2018

BPMN

- process diagram

Derive E-GSM
process model

Y S E—

: Derive E-GSM

artifact lifecycle
model

L —
-y Derive Artifact- |

to-object

.) .

mapping criteria
-

E-GSM
process model

E-GSM artifact
lifecycle model

POLITECNICO MILANO 1863

Configure
smart object

jf |

Artifact-to-object :
mapping criteria :

Back to the motivating example

E
()
—
3 e N
o Fill in f’ ‘) Attach
“é container — container
1] Manufacturer portion Truc%ched Manufacturer portion
= started manufI cturer ended
| t
| o ’
I }
I I
(| . . . R
| | Drive to inland terminal
! I
: | Travel on
| | highway
|
O v AN
Drive to Destination (}
5 manufacturer reached " =)
= Carrier portion Truck reached Container attached Truck feached Comer Carrier portion
P . .
8 started manufacturer to truck Inland ferminal deln1ered ended
| |
I |
I |
2\ I |
. I(—])\ : J
\=)/ f |
N— | I
Container ¢verheated I |
@ I |
Process failed | I
L '
I |
___ J
(I
I
___________________________ J

) Inspect Detach
goods container

Terminal portion Truck reached Container Terminal portion
started inland terminal delivered ended

@<-1---

Inland terminal
/I\

© Giovanni Meroni 2018 POLITECNICO MILANO 1863

Step 1 — Enrich BPMN collaboration diagram

.
e : [—
=1
2 .
B Fill in ‘@ N Atta.ch 8
5 container v container
© Manufacturer portion Truck fached Containefattached ~ Manufacturer portion ended
= started " - manufhcturer T to thuck
: i : |
| |
,,,,,,,,,,, L T S
| |
[: |
Container Container | = I Container : """"""
: [opened,unhooked] [closed,unhooked] | : [closed,hooked] | . .
Truck Truck | Truck : Container :
[garage,moving]: : [manufacturer,still] | [manufacturer,moving] : :
jm o -
| ...
r ~
: Drive to |n|and termmal :
| X
| Travel on : :
[TR highway : :
- : :
Drive to) - _Destination
5 | manufacturer ;. reached :
£ : Carrier portion Truck reached Container attached Truck feached - Carrier portion
8 started manufacturer to truck . Inland ferminal delijered ended
Take a break | | :
..................................... fouenn. |
— | |
L =\ L ! J [
T |
. | |
s f T S
: . o : : | |
: Process failed [: : | |
: § v : f t
: [|
.................. s | |
| |
: Lo - | |
Container : Container : Truck .+ Container Container Truck Truck Truck | |
[opened,hooked] [closed hooked] [inlandterminal, movmg] closed,unhooked][overheated] [highway,moving] [highway,still] [|n|andterm|na| still] : :
: Co | [
A \ o e o o o e o = e e e = —— —— — — — - I
Truck | : [T T T T T T T T T T T e e -
| I
A |
= [
£ | '
E \V,
@ Detach
2 I S .) N (.)
T container
o Terminal portion Truck reached Container Terminal portion ended
c started inland terminal delivered

© Giovanni Meroni 2018 POLITECNICO MILANO 1863

Step 1 — Enrich BPMN collaboration diagram

Fillin | Attach
container container

Manufacturer

| y
|
" Container Container :
- [opened,unhooked] [closed,unhooked] |

Truck = A Container :

[garage,moving\:\ '; L Fi ” i n
o container

T L
Container Container i

- Container : Container . Trl:I
..[9??."#.#'.'?99'@41.g@!??f’:h?.?k?dl;!..' [opened,unhooked] [cIosed,unhooked] FRRE :

Detach
container
Terminal portion ruck reache i Terminal portion ended

Inland terminal

started inland terminal delivered

© Giovanni Meroni 2018 POLITECNICO MILANO 1863

Step 2 — Derive BPMN process view

Container

Container : Container : : Container . Truck : Truck : : Truck
* [closed,hooked] Lo [manufacturer,moving] : [inlandterminal,still] : + [inlandterminal,moving]

i
Fillin : : .
container : s Travel on
! highway
i
i

Attach Detach

container

Destination
reached

Drive

container

Process Process

I i ; : !
i :
s : L : ‘ L I G [Gl G R
! i : : Take a break [+*-widnign: 1 |
! | s | i
! I i I ;
! Carrier portion started ! R e ! |
i srier portion star ! ‘
@ Container Container i
Container fverheated [closed,hooked] [closed,unhooked]: i
N I
i
I
Container i
Truck Container : Truck Truck [opened,hooked] :
* [manufacturer,still] [overheated] [highway,moving] [highway,still] i i
Truck
Truck
Truck : : Truck : i Container : : Truck Truck : : Truck

[garage,moving] : © [manufacturer,still] : : [closed,hooked] [manufacturer,moving] : [Inlandterminal,still] ~: B [inlandterminal,moving]

Drive to inland terminal

Drive to
manufacturer

Travel on
highway

Attach
container

Detach
container

Process
started

Process
ended

Drive
started

Take a break

Container :
[closed,unhooked] :

@
&)

i Process failed

Container Container : Truck Truck :
[closed,unhooked] [overheated] B [highway,moving] [highway,still] :

Container

© Giovanni Meroni 2018 POLITECNICO MILANO 1863

Step 3a — Derive the E-GSM process model

Drive to inland terminal - BPMN

Container
[closed,hooked]

Drive
started

Truck
[highway,moving]

Take a break

Travel on

highway

Destination,
reached

Drive
ended

Truck
[highway,still]

Drive To Inland Terminal — E-GSM

DFG1: on drive_started o

PFG1: not Drivestarted.M1 <P>

Drive
Started

M1:on
drive_started

DFG1: on container_e or
truck_e if container[c,h] and
(truck[m,m] or truck[h,m])

DFG1: on container_e or
. truck_e if container([c,h] and
DFG2: on container_e or (truck[m,m] or truck[h,m])
truck_e if container[c,h] and

truck[h,s])

DFG2: on container_e or
truck_e if container[c,h]
and truck[h,s])

PFG1: DriveStarted. M1 and not
Loop.M1

DFG1: on container_e or truck_e if
container[c,h] and (truck[m,m] or

Loop

Ite

truck[h,m])
PFG1: not TravelOnHighway.M1

DFGL1: on container_e or truck_e if

container[c,h] and truck[h,s])

PFG1: TravelOnHighway.M1
and (00 < Date.hour < 01) and
not TakeBreak.M1

TravelOn

TakeBreak

M1: on truck_l if
truck[i,s] or
truck[h,s]

M1: on truck_| if
truck[h,m]

M1:on
M1: if TravelOnHighway.M1 +lte.M1
and truck[i,s]

and not Active(TakeBreak)

M2: if TravelOnHighway.M1
and (TakeBreak.M1
and (00 < Date.hour < 01))

© Giovanni Meroni 2018

DFG1: on drive_ended o

PFG1: Loop.M1 and not
DriveEnded.M1

M1:on
drive_ended

POLITECNICO MILANO 1863

Step 3b — Derive E-GSM artifact lifecycle model

Container

N
([opened,unhooked] DFG1: on container_| if container[o,u]
<—Q 0 Opened
PFG1: not Active(ClosedUnhooked) or Active
L) (ClosedHooked) or Active(OpenedHooked) or UnhOOkEd

(Active(Overheated) or active(Error))

DFG1: on container_| if container[c,u] 0 Closed

M1: on container_e
if not container[o,u]

M1: on container_e
if not container[c,u]

A 4

([closed,unhooked]) PFG1: Active(OpenedUnhooked) or UnhOOkEd
Active(ClosedHooked)
. . . M1: on container_e
) DFG1: on container_l if container|c,h] 0 Closed if not container[c_h]
PFG1: Active(ClosedUnhooked) or 0 Hooked
i Active(OpenedHooked)
closed,hooked . i
([1 W DFG1: on container_| if container[o,h] 0 Opened ?;ofgocncir;'iczlerﬁg_:]
PFG1: Active(ClosedHooked) 0 Hooked
. . . M1: on container_e
DFG1: on container_l if container([t] 0 if not container[t]_
: Overheated
([opened,hooked] W PFG1: Active(ClosedHooked) 0
. . M1: if not
L DFG1: if Active(ClosedUnhooked) (Active(ClosedUnhooked)
or Active(Overheated) Final or Active(Overheated))
M1: on container_e
: i j i if (container[o,u] or
(overheated]) ! DFG1: on container_| if not (container[o,u] or if ([o,u]

container[c,u] or container[c,h] or 0 ‘ container[c,u] or
O container[o,h] or container|t]) Error container([c,h] or

\ container[o,h] or
< PFG1: false o

container[t])

© Giovanni Meroni 2018 POLITECNICO MILANO 1863

Step 3c — Derive mapping criteria

Container
Container : Container : Container : Truck Truck Truck
[opened,unhooked] : [closed,unhooked] : : [closed,hooked] : : : [manufacturer,moving] : [inlandterminal,still] : ¢ [inlandterminal,moving]
| Par ! Lo S Driveto inland terminal _ P
: i : : Loop [T T T T T T T T s s s s
! : T FE e SO | o
: ! : : Travel on i Seq
i : § . highway 1! : .
.3 . ;
i 1
| ! Atach | | (Y W O N: o W _ipestination ! Inspect Detach
! container reached d i
! i ; goods container
! 1 Drive ! |
tttttt | i " : : ended '-\77:777;77774777777777777<
| ; : ~{ Take a break |¢*widni i : : : : :
; : : : : :
1 N B N 1
i i z i — : SR !
1 Carrier portion started II Mmoo - 7‘ T T = I . 1
S : : : : R : K X : 1
T T T T T : : T T : : : Container Container : ;
: Lo Co Container peerheated i o [closed,hooked] [closed,unhooked] i
: : P e U (R N PROPOS RS : i
: : : i : i
................................... : ‘.. . | : ;
: Container : 1
Truck Container : Truck Truck { [opened,hooked] |) - :
[manufacturer,still] [overheated] : [highway,moving] [highway,still] : : : |
. .. cess failed N
Truck

<LocalArtifact name="Container"/>
<Mapping><Artifact name="Truck">
<BindingEvent id="Carrier_portion_started"/>
<UnbindingEvent id="Carrier_portion_ended"/>
<UnbindingEvent id="Process_failed"/>
</Artifact></Mapping>

© Giovanni Meroni 2018 POLITECNICO MILANO 1863

POLITECNICO
MILANO 1863

Contributions

Monitorability assessment and improvement

Monitorability of a process

* Not all smart objects are suited to monitor a process

« The monitorability of a process indicates how many activities
In a process can be monitored by smart objects [6]

« The capabilities of the Smart Objects affect monitorability

— The execution of activities is determined by the state of the smart
objects
— The state of a smart object is inferred from its physical properties

— The physical properties of a smart object are measured by
Sensors

[6] Meroni, G., Plebani, P.: Artifact-Driven Monitoring for Human-Centric Business Processes with Smart
Devices: Assessment and Improvement. In: BPM Forum 2017

© Giovanni Meroni 2018 POLITECNICO MILANO 1863

Assessing and improving monitorability

« We exploit ontologies to formalize:
— Sensor data provided by smart objects
— Rules to derive the state of an artifact from sensor data

* We then query the ontologies to:
— Compute the monitorability of activities
— Derive the monitorability of the process
— Suggest modifications to improve monitorability:
* Which sensors should be added to smart objects

* Which rules can be easily altered to exploit other sensor
data

© Giovanni Meroni 2018 POLITECNICO MILANO 1863

POLITECNICO
MILANO 1863

Contributions

SMARTiIfact monitoring platform prototype

SMARTIifact — An artifact-driven monitoring platform

Monitoring Platform

REST API Kﬁ

()

>

N oo

Events Events Router E-GSM Engine =

o

Processor @

Sensor State
On-board
data changes
Sensors
Artifact-to-object E-GSM process model

Node-RED flow mapping criteria Operator

Notify

Subscribe

i

(((((O OO OO O nformation

/Truck/ab123xy /Container/sn9876 /Process/instl
MQTT Broker System

O

T

L

. ContalnerSN9876 . Truck AB123XY. . . .
[7] Baresi, L., Di Ciccio, C., Mendling, J., Meroni, G., Plebani, P.: mArtifact: an Artifact-driven Process

Monitoring Platform. In: BPM 2017 Demo Track and BPM Dissertation Award

© Giovanni Meroni 2018 POLITECNICO MILANO 1863

SMARTIifact — An artifact-driven monitoring platform

Stage: LoadContainer
State: closed
Status: regular

Compliance: onTime

Data guard: LoadContainer_dfg1
Value: false
Sentry: ((GSM.isInfoModel("Truck","status","LhrStill"))) && GSM.isEventOccurring("Truck_e")

Process guard: LoadContainer_pfg

Value: false

Sentry: [(GSM.isMilestoneAchieved("LoadContainer_m1")) &&
GSM.isMilestoneAchieved("process_started_m1")

Milestone: LoadContainer_m1

Value: true

Sentry: ((GSM.isInfoModel("Truck","status","LhrMoving"))) &&
GSM.isEventOccurring("Truck_I")

© Giovanni Meroni 2018

--. S G)
(oFc4] (oFcs| (oFes) (oFe7) ~

(@ @)

process_started

| DFGO | | DFGO
| |
TravelUK TakeBreakUK
DFGO

SequenceFlow_3 SequenceFlow_13

LoadContainer

ExclusiveGateway_1_iteration

J/
Exclusive Gateway_1

DFGO

process_ended

TakeChannelTunnel

TravelEU TakeBreakEU

SequenceFlow_10 SequenceFlow_6

ExclusiveGateway_7

POLITECNICO MILANO 1863

POLITECNICO
MILANO 1863

Validation

Validating SMARTIfact — Simulated environment

« Eight shipment processes provided by a large European
logistics company [8]

« Two datasets related to 77 shipments
— Dataset 1: position and speed of trucks (19966 entries)

— Dataset 2: activation and termination of activities in shipment
processes, manually notified by truck drivers (815 entries)

« Dataset 1 was replayed on SMARTIfact
* The results of the monitoring were compared with Dataset 2
— Over 93% of the shipments were correctly monitored
— SMARTIfact detected more activities than manual notifications
— Detection delay was less than 5 minutes w.r.t. 533 minutes uptime

[8] Meroni, G., Di Ciccio, C., Mendling, J.: An Artifact-Driven Approach to Monitor Business Processes
Through Real-World Objects. In: ICSOC 2017

© Giovanni Meroni 2018 POLITECNICO MILANO 1863

Validating SMARTIfact — Field evaluation

— -

Equipped my briefcase with an Intel
Galileo SBC and a GPS receiver

* Monitored for 4 months the process of
going to work and back home

* Almost 95% of the process
Instances were correctly identified

« The median detection delay was
less than 2 minutes, while the
processes lasted on average
102 minutes

© Giovanni Meroni 2018

POLITECNICO
MILANO 1863

Dissemination

Publications

* Meroni, G.: Integrating the Internet of Things with Business Process Management: A Process-aware Framework for
Smart Objects. In: CAISE 2015 Doctoral Consortium. CEUR Workshop Proceedings, pp 56-64. CEUR-WS.org
(2015)

* Baresi, L., Meroni, G., Plebani, P.. A GSM-based approach for Monitoring Cross-Organization Business Processes
using Smart Objects. In: BPM 2015 Workshops. LNBIP, pp 389-400. Springer International Publishing (2016)

* Baresi, L., Meroni, G., Plebani, P.: Using the Guard-Stage-Milestone Notation for Monitoring BPMN-based
Processes. In: Enterprise, Business-Process and Information Systems Modeling 2016. LNBIP, pp.18-33. Springer
International Publishing (2016)

* Baresi, L., Meroni, G., Plebani, P.. On Handling Business Process Anomalies through Artifact-based Modeling. In:
CAISE-Forum 2016. CEUR Workshop Proceedings, pp 9-16. CEUR-WS.org (2016)

* Meroni, G., Di Ciccio, C., Mendling, J.: Artifact-driven process monitoring: Dynamically binding real-world objects to
running processes. In: CAISE-Forum-DC 2017. CEUR Workshop Proceedings, pp. 105-112. CEUR-WS.org (2017)

* Meroni, G., Plebani, P.: Artifact-Driven Monitoring for Human-Centric Business Processes with Smart Devices:
Assessment and Improvement. In: BPM Forum 2017. LNBIP, pp 160-176. Springer International Publishing (2017)

* Baresi, L., Di Ciccio, C., Mendling, J., Meroni, G., Plebani, P.: mArtifact: an Artifact-driven Process Monitoring
Platform. In: BPM 2017 Demo Track and BPM Dissertation Award. CEUR Workshop Proceedings, CEUR-WS.org
(2017)

* Meroni, G., Di Ciccio, C., Mendling, J.: An Artifact-Driven Approach to Monitor Business Processes Through
Real-World Objects. In: Service-Oriented Computing - ICSOC 2017. LNCS, pp. 297-313. Springer International
Publishing (2017)

* Meroni, G., Baresi, L., Montali, M., Plebani, P.: Multi-party business process compliance monitoring through
loT-enabled artifacts. In: Information Systems. Volume 73, pp. 61 — 78. Elsevier (2017)

© Giovanni Meroni 2018 POLITECNICO MILANO 1863

POLITECNICO
MILANO 1863

Conclusion & future work

Conclusion

 Artifact-driven process monitoring can effectively monitor inter-
organizational processes

— The IoT makes physical objects smart

— Operators no longer have to send notifications

— Violations can be autonomously detected

— Monitoring is continuous, without human intervention

— The SMARTIfact platform proved the applicability of this approach
« The information required for artifact-driven monitoring can be

derived from BPMN models
— An E-GSM model, to introduce flexibility
— Criteria to bind and unbind smart objects to running processes

© Giovanni Meroni 2018 POLITECNICO MILANO 1863

Future Work

 Integrating artifact-driven process monitoring with blockchain
to achieve trusted monitoring [9]

 Introducing mechanisms to make monitoring robust when
network communications are unreliable [10]
« Exploring the capabilities of 5G mobile networks
* Implementing corrective actions to compensate loss and delay
* |nvestigating on distributed consistency among smart objects

[9] Meroni, G., Plebani, P.. Combining Artifact-Driven Monitoring with Blockchain: Analysis and Solutions. In:

CAISE 2018 Workshops
[10] Meroni, G., Plebani, P., Baresi, L.: Introducing Eventual Consistency in Artifact-driven Process

Monitoring. Paper submitted to EDOC 2018

© Giovanni Meroni 2018 POLITECNICO MILANO 1863

Ricerca

TGN ETEEEER PON | e Competitivita
Fondo europeo di sviluppo regionale 2007-2013

At Dpriversitss o dotts Fbcerea

TRASPORTI ITALIA 2020

POLITECNICO
MILANO 1863

Thanks for your attention

This PhD has been funded by the Italian Project ITS2020
under the Technological National Clusters program

Backup slides

E-GSM Stage lifecycle

E-GSM allows to monitor processes with respect to three
orthogonal dimensions:

« Execution
status:

. Unopened

« Opened

. Closed
Execution

outcome:

Regular

. Faulty
Execution

compliance:

. OnTime

. OutOfOrder

Skipped

~

Skipped

}

Regular

—
Ll

Unopened

)

A

OutOfOrder

S.DFGi

\

Regular

3%

Closed

S.DFG; or -5.M——

Opened

|

+S.Mj

(S.DFG; or -S.M;) and not S.PFGy

S.DFG; and not S.PFG

O

-

OnTime

~

| |
(S.DFG;: S’ #S) and (Active(S) or S.M; in S".PFGy)

—O

-

Regular

S
Unopened

=
O

K

~————

Closed Opened

SDFG, and SPFGk

sl

—

[,

Faulty

Closed

S.DFGi or -S.Mj_\

S.FL; \

5.
¢

Opened

m

+S.Mj

.

0l

+S.M;

(S.DFG; or -S.M;) and S.PFGY

4l

-

Faulty

(S.DFG; or -S.M;) and S.PFG
Closed

Opened

J

(S.DFG; or -S.M;) and not S.PFGy

!

\

I}
i

AN

—+5.M;

© Giovanni Meroni 2018 POLITECNICO MILANO 1863

Basic translation rules

Each activity is translated into a Stage with one or more DFG

and one or more M

*Each event is translated into a Stage with a DFG and a M
capturing the occurrence of the event

*Each non-interrupting boundary event is translated into a FL
*Each interrupting boundary event is translated into a FL and a M

BPMN | E-GSM

BPMN | E-GSM

H

Rule 1: Activity
DFG1: [A_s] @.. M1: [A_t]
A

Rule 2: Event

DFGl:one M1:one
e e e

Rule 3: Activity with non blocking Boundary Event

DFG1: [A_s] <D (O M1:[A t]
A A /\ FL1:one

© Giovanni Meroni 2018

\
Y

X
N _

o

Rule 4: Activity with blocking Boundary Event
DFG1: [A_s] <D> () M1:[A_t]
A A (OMe:one
@ /\ FL1:one
e

POLITECNICO MILANO 1863

Translating the normal flow

EEEEE

* ldentification of process —
blocks

« Single inbound and single
outbound control flows

0
_ N
« Can be nested woiid e
« Five process blocks: M | e
Sequence, Parallel,
Conditional exclusive, —]
Conditional exclusive, Loop <’§ ' |
« Each block is translated into =
an E-GSM stage § o) S
- DFG, PFG an M depend on
the nature of the block o
* Inner blocks become inner X ST L e
stages s

[

™ ML: if ((A.M1 and a) or (B.M1 and
b)) and not (Active(A) or Active(B))

M1 M1: if ((A.M1 and a) or not a)

A t and ((B.M1 and b) or not b) and
- not (Active(A) or Active(B))

M1:

B_t]

w2 >
\ L5 27)

-

spozz | ||3:E iz : iis &t

&0 6" OO O-6n &0 O-0n H-On OO -3
O O O O O O O O O

® Giovanni Meroni 2018 POLITECNICO MILANO 1863

Translating the exceptional flow

« EXxceptional flow is alternative to normal flow
« Originates from interrupting boundary events

« Can go either in the same or in the opposite direction wrt normal
flow

* Must be merged with normal flow with an exclusive merge
gateway.

« Exceptional flow runs in parallel with the normal flow
« Originates from non-interrupting boundary events

* Must be merged with normal flow with an inclusive merge
gateway

© Giovanni Meroni 2018 POLITECNICO MILANO 1863

Translating the exceptional

flow

 Three exceptional
blocks definable

 Forward exception
handling

« Backward exception
handling

* Non-interrupting
exception handling
 They behave similarly
to Conditional
exclusive, Loop and
Conditional inclusive
blocks, respectively

© Giovanni Meroni 2018

BPMN

E-GSM

Rule 11: forward exception handling block

M1: EExc ML1: if ((C.M1 and A.Me) or
DFG1: [A : y ; R
[A_s] > O Ay D[FBG; &> DraL: 8.5 <5) MO (8.M1 and not AMe)) and
A O Me: DF(;2~ PFG1: not A.Me and not & [B_t][not (Active(C) or Active(B))
one c sj B.M1 and not Active(C)

FL1:

A .
one DFG1: [C_s] <O> O ?21;]
PFGL: (AMeor AM1) o PRG1: AMe and ot [c -
and not EExc.M1 C.M1 and not Active(B)

Rule 12: backward exception handling block

Xy
fon

ELoop

SOOI ® DRGL (A D oo
[oeea e, eime A O
am;. M2: if (A.Me or A.M1)
DFG1: [B_s] <O> OME
A.M1) and A.Me On h

and A.Me and B.M1
PFG1: (A.Me or
and not B.M1

M1: if (A.Me or A.M1)
and not A.Me M1:on

DFG1: [A_s
[A_s] and not Active(B)

DFG2: [B_s]

Rule 13: non interrupting exception handling block

Einc

DFG1: [A_s] < . £ X M1: if AM1 and
DFG1: [A_s] <O> A OML[At] ot Active(s)
DFG2: [B_s] <®> PFG1: not AM1 <p> [\ Fllone
DFG1: [B_s] <O> O M1:[B_t]
PFG1: Active(A) <p>

POLITECNICO MILANO 1863

Translation by Example

Shipment req

X

Load goods

Locate missing

Ship to

Inventory =

Store in Ship to

Shipment_req.BOM "| terminal

Inventory

warehou!

consumer

Inventory #
Shipment_req.BOM

goods

Delivery outcome
Goods
On NewsSerjsorSamp|
If Temperature > 0°C

Discard
goods

E-GSM

DFG1:on
MessageReceived

if body:shipment_req
DFG2:
[LoadGoods_s]

<>

DFG1: on MessageReceived
if body:shipment_req

M1: on Message

if body:shipment_req
M1:if
ShipmentReq.M1 and
Loop.M1 and

ShipToTerminal.M1 and

(StorelInWarehouse.M1 or
StorelnWarehouse.Me) and|

DFG3: on MessageSent DFG1: DFG1: DFG1: DFG1:
if body:i ory _s] n s [LoadGoods_s] 0 [LoadGoods_s] 0 Load .
DFG4: DFG2: on DFG2: on DFG2: on PRGL: ot (B, Goods
L 5 s] L M1

if body:inventory
DFG3: [Locate

MissingGoods_s]

DFGS:
[ShipToTerminal_s]

DFG6:
[StorelnWarehouse_s]
DFG7:
[ShipToConsumer_s]
DFGS: and not Loop.M1
[DiscardGoods_s]
DFG9: on MessageSent
if body:
delivery_outcome

f body:inventory if body:inventory
DFG3: [Locate

issingGoods_s]

DFG1: on MessageSent
if body:inventory 0
BFG1L: not seqa.m1 P>

PFG1: LoadGoods.M1

and not Inventory.M1

Inventory

M1 if Seq2.M1
and inventory=
shipment_req.BOI
and not Active(

LocateMissingGoods)

EExc.M1 and

ML if DeliveryOutcome.M1

LoadGoods.M1
and Inventory.M

M1:
[LoadGoods_t]

M1:on
+lte.M1)

M1:on

MessageSent)

if body: M2: U‘Seg;Ml and

inventory CollectMissing
Goods.M1 and
inventory!=

DFG1:

[LocateMissingGoods_s]

PFG1: Seq2.M1 and
inventory!=shipment_req.BOM
and not LocateMissingGoods.M1

Locate
Missing
Goods

shipment_req.BOM

M1:
[LocateMissingGoods_t]

DFG1:
[ShipToTerminal_s] 0 ShipTo

0 Terminal

PFG1:Loop.M1 and not
ShipToTerminal.M1

DFG1:
[StorelnWarehouse_s]

O
Storeln

Warehous

<&

PFG1: ShipToTerminal. M1 and
not (StorelnWarehouse.M1 or
StorelnWarehouse.Me)

M1:
[ShipToTerminal_t]

M1:
[StoreInWarehouse_t]
Me: on NewSensorValue
if Temperature: > 20°C
FL1: on NewSensorValue
if Temperature: > 20°C

DFG1:
[ShipToConsumer_s] 0

PFG1: not StorelnWarehouse.Me
and not ShipToConsumer.M1 0 onsumer
and not Active(DiscardGoods)

DFG1:
[ShipToConsumer_s]
DFG2.

[DiscardGoods_s] o

PFG1: (StoreInWarehouse.M1
or StorelInWarehouse.Me) and
not EExc.M1

DFG1:

[DiscardGoods_s]

PFG1: StoreInWarehouse.Me and
not DiscardGoods.M1

and not Active(ShipToConsumer)

<&> Discard

M1:

[ShipToConsumer_t]| ML: if
((ShipToConsumer.M1
and not

StorelnWarehouse.Me)
or (DiscardGoods.M1 and
StorelnWarehouse.Me))
and not
(Active(ShipToConsumer)
or Active(DiscardGoods))

M1:
[DiscardGoods_t]

DFG1: on MessageSent
if body:delivery_outcome

PFG1: EExc.M1 °0utcome
and not DeliveryOutcome.M1

M1: on MessageSent
if body:delivery_outcome

© Giovanni Meroni 2018

Translation by Example

Activities

Shipment req

Ship to

Inventory =

Store in

Load goods

Shipment_req.BOM | terminal

Inventory

Ship to

wa rehou;o\

Locate missing
goods

Inventory #
Shipment_req.BOM

@)

Goods

consumer

On NewSerjsorSample:
If Temperature >0°C

Discard
goods

Delivery outcome

E-GSM

DFG1: on MessageReceived
if body:shipment_req

DFG1:
[LoadGoods_s]

Load ‘

Goods

DFG7:
[ShipToConsumer_s]

DFG8:
[DiscardGoods_s]

DFG1:
[StorelInWarehouse_s]

©

IShipmentReq.M1
and not Loop.M1

M1: on Message
if body:shipment_req

M1: N

[LoadGoods_t] > Ven

[LoadGoods_s] NG, Load
PFG1: not £p, Goods
LoadGoods.|
pn MessgdeSent
bod ventory
Inventory

adGoods.M1 0

and not Inventory.M1

M1: if
LoadGoods.M1

M1:
[LoadGoods_t]]” and Inventory.M:

M1:on
MessageSent
if body:
inventory

PFGL: DFG1:

[LocateMissingGoods_s]
PFG1: Seq2.M1 and
inventory!=shipment_req.BOM

Locate
Missing
Goods

Storeln
Warehousé

M1:
[LocateMissingGoods_t]

\:I_SAMI

M1: if Seq2.M1
and inventory=
shipment_req.BOI
and not Active(

LocateMissingGoods)

M2: if Seq2.M1 and
CollectMissing
Goods.M1 and
inventory!=
shipment_req.BOM

M1:
[StorelInWarehouse_t]

DkG1:
inal 5] <O ShipTo

0 Terminal

Ind ndt
al.M\

Me: on NewSensorValue [
if Temperature: >20°C |

M1:
[ShipToTerminal_t]

M1:
[StorelnWarehouse_t]
Me: on NewSensorValue
if Temperature: > 20°C
FL1: on NewSensorValue
if Temperature: > 20°C

FL1: on NewSensorValue

. P61
if Temperature: > 20°C [/2<p shere
ler. M1

© Giovanni Meroni 2018

PFG1: (StoreInWarehouse.M1
or StorelInWarehouse.Me) and
not EExc.M1

DFG1:

[DiscardGoods_s] 0 Discard

PFG1: StoreInWarehouse.Me and
not DiscardGoods.M1

nd not Active(ShipToConsumer)

M1:
[ShipToConsumer_t]| M1 if

and not

((ShipToConsumer.M1

M1:
[DiscardGoods_t]

DFG1: on MessageSent .
if body:delivery_outcome 0 Delivery

PFG1: EExc.M1 oOUtcome
and not DeliveryOutcome.M1

StorelnWarehouse.Me)
or (DiscardGoods.M1 and
StorelnWarehouse.Me))
and not
(Active(ShipToConsumer)
or Active(DiscardGoods))

M1: on MessageSent
if body:delivery_outcome

M1:on
+lte.M1)

M1:if

ShipmentReq.M1 and
Loop.M1 and
ShipToTerminal.M1 and
(StorelInWarehouse.M1 or
StorelnWarehouse.Me) and|
EExc.M1 and
DeliveryOutcome.M1

Translation by Example

Non-boundary Events

BPMN

Inventory = | Ship to |

| Store in Ship to

Load goods

Shipment req

Shipment_req.BOM | terminal I

Inventory

consumer

Locate missing
goods

Inventory #
Shipment_req.BOM

| warehouses

Goods
On NewsSerjsorSample:
If Temperature > 0°C

Discard
goods

=)

Delivery outcome

E-GSM

DFG1: on
MessageReceived

M1: on Message
if body:shipment_req

if body:shipment_req

Seql
DFG1: on MessageReceived
if body:shipment_reg <CPshipment ()
PFG1: not o
hi Req.M1

DEG2:

DFG1: on MessageSent
if body:inventory @

© Giovanni Meroni 2018

if body: @

DFG1:

LoadSpods_s]

M1: on
MessageSent
if body:

PFG\ not
loadGoods N1

h MessageSent
body:inventory

Inventory

| oadGoods.M1
t Inventory.M

Inventory

M1: if Seq2.M1
and inventory=
shipment_req.BO
and not Active(

LocateMissingGoods)

M1:if
LoadGoods.M1
and Inventory.M

M1:
[LoadGoods_t;

M1:on

MessageSent

if hodyg: M2: if Seq2.M1 and
inventory (CollectMissing

Goods.M1 and
inventory!=

inventory

Missing
Ingfit_req.BOM Goods

ingGoods.M1

shipment_req.BOM
M1:

[LocateMissingGoods_t]

delivery_outcome DFG1:

[ShipToTerminal_s] 0 ShipTo

PFG1:Loop.M1 and not
ShipToTerminal.M1

DFG1:

StorelnWarehouse_s|
! -l Storeln

Warehous

<&

PFG1: ShipToTerminal. M1 and
not (StorelnWarehouse.M1 or
StorelnWarehouse.Me)

M1:
[ShipToTerminal_t]

M1:
[StorelnWarehouse_t]
Me: on NewSensorValue
if Temperature: > 20°C
FL1: on NewSensorValue
if Temperature: > 20°C

DFG1:

[ShipToConsumer_s] 0 ShipTo

PFG1: not StoreInWarehouse.Me
and not ShipToConsumer.M1
and not Active(DiscardGoods)

DFG1:
[ShipToConsumer_s]

DFG2: 0
[DiscardGoods_s)

PFG1: (StorelnWarehouse.M1
or StorelnWarehouse.Me) and o
not EExc.M1

DFG1:

[DiscardGoods_s]

PFG1: StoreInWarehouse.Me and
not DiscardGoods.M1

and not Active(ShipToConsumer)

0 Discard

M1:

[ShipToConsumer_t]| ML if
((ShipToConsumer.M1
and not

StorelnWarehouse.Me)
or (DiscardGoods.M1 and
StorelnWarehouse.Me))
and not
(Active(ShipToConsumer)
or Active(DiscardGoods))

M1:
[DiscardGoods_t]

DFG1: on MessageSent .
if body:delivery_outcome <O Delivery

PFG1: EExc.M1 o Outcome
and not DeliveryOutcome.M1

M1: on MessageSent
if body:delivery_outcome

M1:on
+lte.M1

M1:if

ShipmentReq.M1 and
Loop.M1 and
ShipToTerminal.M1 and
(StorelInWarehouse.M1 or
StorelnWarehouse.Me) and|
EExc.M1 and
DeliveryOutcome.M1

Translation by Example

Inner Sequence Block

Shipment req

X

Load goods

Locate missing
goods

Inventory =

Ship to

Store in Ship to

X

Inventory

Inventory #
Shipment_req.BOM

Shipment_req.BOM

terminal

warehou!

consumer

Goods

On NewsSer|sorSample:
If Temperature > 0°C

Discard
goods

Delivery outcome

E-GSM

DFG1:on
MessageReceived

if body:shipment_req
DFG2:
[LoadGoods_s]

DFG3: on MessageSent

<>

O

DFG1: on MessageReceived
if body:shipment_req

M1: on Message
if body:shipment_req

DFG1:

if body ory
DFG4:

DFG1:

ds_s] <O

DFG2: on DFG2: on

B

DFG2: on

DFG1:
[LoadGoods_s] 0 Load .

PFGL: not &5 Goods

M1:
[LoadGoods_t

[L issi 5_s]

DFGS:
[ShipToTerminal_s]

DFG6:
[StorelnWarehouse_s]
DFG7:
[ShipToConsumer_s]

DFG9: on MessageSent
if body:

<

if body:inventory
DFG3: [Locate
issingGoods_s]

if body:inventory

DFG3: [Locate
MissingGoods_s] 0

L
if body:inventory

BFG1L: not seqa.m1 P>

ds.M1

DFG1: on MessageSent
if body:inventory 0

PFG1: LoadGoods.M1
and not Inventory.M1

Inventory

M1: if Seq2.M1
and inventory=
shipment_req.BOI
and not Active(

LocateMissingGoods)

M1: if
LoadGoods.M1
and Inventory.M

M1:on
+lte.M1)

M1:on

MessageSent)

ifbody: M2: U‘SegZ:Ml and

inventory CollectMissing
Goods.M1 and
inventory!=

[LocateMissingGoods_s]
PFG1: Seq2.M1 and
inventory!=shipment_req.BOM
and not LocateMissingGoods.M1

DFGL:
Missing
Goods

shipment_req.BOM

M1:
[LocateMissingGoods_t]

DFG1:
[LoadGoods_s]

DFG1:
[LoadGoods_s]
DFG2: on
MessageSent

PFG1: not
LoadGoods.M1

if body:inventory

DFG1: on MessageSent
if body:inventory

PFG1: LoadGoods.M1
and not Inventory.M1

© Gilovanni Meroni 2018

[LoadGoods_t

M1: on
MessageSent
if body:
inventory

M1: if

LoadGoods.M1
and Inventory.M1

se_t]

orValue
20°C

orValue
20°C

pr_t] ML if
((ShipToConsumer.M1
and not
StorelnWarehouse.Me)
or (DiscardGoods.M1 and
] StorelnWarehouse.Me))
and not
(Active(ShipToConsumer)
or Active(DiscardGoods))

Pent
outcome

M1:if

ShipmentReq.M1 and
Loop.M1 and
ShipToTerminal.M1 and
(StorelInWarehouse.M1 or
StorelnWarehouse.Me) and|
EExc.M1 and
DeliveryOutcome.M1

Translation by Example

Loop Block

Shipment req

<

Load goods

Inventory

Locate missing
goods

Inventory #
Shipment_req.BOM

Inventory =

Ship to Store in

Shipment_req.BOM

terminal warehou.

Ship to
consumer

Delivery outcome

On NewsSerjsorSample:
If Temperature >0°C

Discard
goods

E-GSM

DFG1: on
MessageReceived

if body:shipment_req
DFG2:

[LoadGoods_s]

DFG3: on MessageSent
if body:inventory

<>

DFG4:

DFG1:
[LoadGoodsfs] 0

DFG1: on MessageReceived

if body:shipment_req

M1: on Message
if body:shipment_req

M1:if
ShipmentReq.M1 and
Loop.M1 and

DFG1:
[Load:!

DFG2: on

‘_51 Load .

PFGL: not 0 Goods

M1:if
LoadGoods.M1

[LoadGoods_tIT” and Inventory.M

L issi ds_s]
DFGS:
[ShipToTerminal_s]
DFG6:
[StorelnWarehouse_s]

DFG7:
[ShipToConsumer_s]

DFG8:
[DiscardGoods_s]
DFG9: on MessageSent

if body:inventory

issingGoods_s] 0

If body:inventory if body:inventory
DFG3: [Locate

issingGoods_s]

DFG3: [Locate

LoadGoods.M1

DFG1: on MessageSent

if body:inventory o
PFG1: LoadGoods.M1 o

and not Inventory.M1

M1:on
MessageSent
if body:
inventory

)

Inventory

DFG1:
[LocateMissingGoods_s]

M1:

Locate

P [LocateMissingGoods_t]
PFGL: Seq2.M1 and Missing
inventory!=shipment_req.BOM Goods
and not LocateMissingGoods.M1
————

ShipToTerminal.M1 and
(StoreInWarehouse.M1 or
StorelnWarehouse.Me) and|
EExc.M1 and
DeliveryOutcome.M1

M1: if Seq2.M1
and inventory=
shipment_req.BO
and not Active(

M2: if Seq2.M1 and
CollectMissing
Goods.M1 and
inventory!=
shipment_req.BOM

DFG1: . DFG1:
DFG1: DFG1:
[LoadGoods_s] [LoadGoods_s] (0> [LoadGoods_s] 0 [LoadGoods_s]
DFG2: on DFG2: on DFGZ: on PFG1: not
MessageSent MessageSent MessageSent LoadGoods.M1

7 body:inventory if body:inventory
DFG3: [Locate

issingGoods_s]

if body:inventory

DFG1: on MessageSent
if body:inventory

DFG3: [Locate

MissingGoods_s] <0 PFG1: not Seq2.M1

PFG1: LoadGoods.M1
and not Inventory.M1

M1:
[LoadGoods_t

Load
Goods

M1: on
0 . MessageSent
if body:
Inventory inventory

PFG1:

ShipmentReq.M1 0
and not Loop.M1

DFG1:

[LocateMissingGoods_s]

PFG1: Seq2.M1 and
inventory!=shipment_req.BOM
and not LocateMissingGoods.M1

M1:

Locate
Missing
Goods

O

[LocateMissingGoods_t]

M1: if
LoadGoods.M1
and Inventory.M

M1: if Seq2.M1
and inventory=
shipment_req.BO
and not Active(
LocateMissingGoods,

M2: if Seq2.M1 and
CollectMissing
Goods.M1 and
inventory!=
shipment_req.BOM

t

[foConsumer.M1

InWarehouse.Me)
cardGoods.M1 and
[nWarehouse.Me))

t
E(ShipToConsumer)
ive(DiscardGoods))

Translation by Example

Forward Exception Handling Block

Inventory = Ship to Store in
@ o Load goods A =4 X Shipment_req.8B0M | - terminal warehouse|

| consumer

Ship to

Shipment req Inventory @ Delivery outcome
) Goods -
Locate missing Inventory # On NewSellsorSampIe: Discard
goods Shipment_req.BOM If Temperature > 0°C goods

E-GSM

Seql

DFG1: on MessageReceived f ?: M1: on Message
if body:shipment rea \C>Shipment if. i ron

EExc

[DiscardGoods_s]

and not Active(DiscardGoods)

PFG1: (StorelnWarehouse.M1 DFG1:

or StoreInWarehouse.Me) and 0 [DiscardGoods._s] 0 Discard M

and not
StorelnWarehouse.Me)

: or (DiscardGoods.M1 and
[DiscardGoods_t] StorelnWarehouse.Me))

DEG1: DFG1: M1:
(ShipTo Consumeerj Q [ShipToConsumer_s] ShipTo [Shi.pToConsumer ; .
P DEG2: PFG1: not StorelnWarehouse.Me P |V|11'lf
, 0 and not ShipToConsumer.M1 onsumer ((ShipToConsumer.M1
(:) 1

pnd
lor
e) and

O
Storeln

PFG1: ShipToTerminal. M1 and Warehous
not (StorelnWarehouse.M1 or 0
Warehowsa e

[StorelnWarehouse_s] [StoreInWarehouse_t]

Me: on NewSensorValue

if Temperature.>-26*
omNewSensorValue

if Temperature: > 20°C

DFG1:
[ShipToConsumer_s]
DFG2:

j O
[DiscardGoods_s] and not Active(DiscardGoods)
PFG1: (StoreInWarehouse.M1
or StorelInWarehouse.Me) and
not EExc.M1

gnd not Active(ShipToConsumer)

DFG1: on MessageSent . M1: on MessageSent
if body:delivery_outcome Delivery . if body:delivery_outcome
PFG1: EExc.M1 Outcome
and not DeliveryOutcome.M1

© Giovanni Meroni 2018

not EExc.M1
PFG1: StorelnWarehouse.Me and Goods and not
not DiscardGoods.M1 0 (Active(ShipToConsumer)
gnd not Active(ShipToConsumer) or Active(DiscardGoods))

EExc
DFG1:
. . M1:
0 [ShipToConsumer_s] 0 ShipTo [ShipToConsumer t)
PFG1: not StorelnWarehouse.Me ML if
and not ShipToConsumer.M1 {P>Consumer ((ShipToConsumer.M1
and not

StorelnWarehouse.Me)

0) DFG1: . d . M1: or (DiscardGoods.M1 and
[DiscardGoods_s] Discar [DiscardGoods_t] | StorelnWarehouse.Me))
PFG1: StoreInWarehouse.Me and Good and not
not DiscardGoods.M1 ooas (Active(ShipToConsumer)

or Active(DiscardGoods))

Translation by Example

Outer Sequence Block

Shipment req

Load goods

Inventory

Locate missing

goods

Shipment_req.BOM

Inventory #
Shipment_req.BOM

Ship to Store in Ship to

terminal warehou;&\ consumer
<
Goods .
on NewSerIsorSamp Discard
If Temperature >0°C goods

=)

Delivery outcome

E-GSM

DFG1:on
MessageReceived

if body:shipment_req
DFG2:
[LoadGoods_s]

DFG1: on MessageReceived
if body:shipment_req

M1: on Message
if body:shipment_req

DFG3: on MessageSent DFG1: DFG1: DFG1: DFG1:
if body:i ory [L _s] n s 0 [LoadGoods_s] O [LoadGoods_s] 0
DFG4: DFG2: on DFG2: on DFG2: on

[L issi 5_s]

if body:inventory

<>

DFGS5:

[ShipToTerminal_s] DFG3: [Locate

DEG6: issingGoods_s]
[StorelnWarehouse_s]
DFG7:
[ShipToConsumer_s]

DFG8:
[DiscardGoods_s]
DFG9: on MessageSent
if body:
delivery_outcome

if body:inventory
DFG3: [Locate
issingGoods_s]

BFG1L: not seqa.m1 P>

if body:inventory

M1:on
DFG1: on MessageSent MessageSent
if body:inventory 0 if body: M2: if Seq2.M1 and
Inventor ; , CollectMissing
PFG1: LoadGoods.M1 V| inventory Goods.M1 and
and not Inventory.M1 inventory!=

M1: if Seq2.M1
and inventory=
shipment_req.BOI
and not Active(

LocateMissingGoods)

M1: if
LoadGoods.M1
and Inventory.M

M1:
[LoadGoods_t]

M1:on
+lte.M

DFG1:

[LocateMissingGoods_s]

PFG1: Seq2.M1 and
inventory!=shipment_req.BOM
and not LocateMissingGoods.M1

shipment_req.BOM
M1:
[LocateMissingGoods_t]

Locate
Missing
Goods

DFG1:
[ShipToConsumer_s]
DFG2.

[DiscardGoods_s] o

PFG1: (StoreInWarehouse.M1
or StorelInWarehouse.Me) and 0
not EExc.M1

DFG1:

[ShipToTerminal_s] 0

PFG1:Loop.M1 and not
ShipToTerminal.M1

DFG1:
[StorelnWarehouse_s]

PFG1: ShipToTerminal. M1 and
not (StorelnWarehouse.M1 or
StorelnWarehouse.Me)

M1:

ShipTo [ShipToTerminal_t]

[StorelnWarehouse_t]
Me: on NewSensorValue
if Temperature: > 20°C
FL1: on NewSensorValue
if Temperature: > 20°C

Storeln

Warehous
<>

DFG1:

[ShipToConsumer_s]

PFG1: not StorelnWarehouse.Me
and not ShipToConsumer.M1
and not Active(DiscardGoods)

DFG1:

[DiscardGoods_s]

PFG1: StoreInWarehouse.Me and
not DiscardGoods.M1

and not Active(ShipToConsumer)

M1:
[ShipToConsumer_t]|

<
<P>Consumer

M1:if
((ShipToConsumer.M1
and not
StorelnWarehouse.Me)
or (DiscardGoods.M1 and
StorelnWarehouse.Me))
and not
(Active(ShipToConsumer)
or Active(DiscardGoods))

M1:
[DiscardGoods_t]

<&> Discard

DFG1: on MessageSent

PFG1: EExc.M1
and not DeliveryOutcome.M1

if body:delivery_outcome o Delivery

M1: on MessageSent
if body:delivery_outcome

O Outcome

© Giovanni Meroni 2018

M1:if

ShipmentReq.M1 and
Loop.M1 and
ShipToTerminal.M1 and
(StorelInWarehouse.M1 or
StorelnWarehouse.Me) and|
EExc.M1 and
DeliveryOutcome.M1

Monitorability of a process

*Not all smart objects are suited to monitor a process

*The monitorability of a process indicates how many activities in
a process can be monitored by smart objects
*The capabilities of the Smart Objects affect monitorability

« The execution of activities is determined by the state of the smart
objects

» The state of a smart object is inferred from its physical properties

» The physical properties of a smart object are measured by
Sensors

*\We propose an ontology-based approach to:
* Formalize the capabilities of smart objects
« Estimate the monitorability
* Provide suggestions to improve the monitorability

© Giovanni Meroni 2018 POLITECNICO MILANO 1863

Smart object ontology

*Ontology derived from FIESTA-IoT that captures the capabillities
of the smart object

@ realizesArtifac

| Plate
AB123XY

© Giovanni Meroni 2018 POLITECNICO MILANO 1863

Truck {E=realizesArtifact==—

Smart object ontology

*Ontology derived from FIESTA-IoT that captures the capabillities
of the smart object

GPS
Receiver

onPlatform

onPlatform

Plate

lizesArtifact—
Truck [—realizesArtifact AB123XY

onPlatform

Speedometer

© Giovanni Meroni 2018 POLITECNICO MILANO 1863

Smart object ontology

*Ontology derived from FIESTA-IoT that gaptures |the capabillities
of the smart object _

hasQuantityKind

GPS
Receiver

Smart Sensing
realizesArtifact . onPlatform Device
Object onPlatform hasQuantityKind

Plate Speee
Truck K—realizesArtifact— Instantaneous

AB123XY
\ /

onPlatform hasQuantityKind
'}

Speedometer

© Giovanni Meroni 2018 POLITECNICO MILANO 1863

Smart object ontology

*Ontology derived from FIESTA-IoT that gaptures |the capabilities
of the smart object _

hasQuantityKind

Coordinates
DD

GPS
Receiver

Sensing
Device
onPlatform

hasQuantityKind

Quantity
Kind

Speed
.) Plate
Truck [K—realizesArtifact— Instantaneous
AB123XY
& A
onPlatform hasQuantityKind
Speedometer hasUnit KilometerHour

© Giovanni Meroni 2018 POLITECNICO MILANO 1863

State detection rules ontology

*Ontology derived from Physics Domain ontology (Hachem et al.
— MDS 2011) that formalizes how sensor data is used to infer a

?ﬁassumesﬂat e e
Still

Truck

Moving

© Giovanni Meroni 2018 POLITECNICO MILANO 1863

State detection rules ontology

*Ontology derived from Physics Domain ontology (Hachem et al.
— MDS 2011) that formalizes how sensor data is used to infer a

producesState_
Truck

speed2state

umesState producesState

Moving

© Giovanni Meroni 2018 POLITECNICO MILANO 1863

State detection rules ontology

*Ontology derived from Physics Domain ontology (Hachem et al.
— MDS 2011) that formalizes how sensor data is used to infer a

speedinst
kmh

Truck

speed2state

producesState

Moving

© Giovanni Meroni 2018 POLITECNICO MILANO 1863

State detection rules ontology

*Ontology derived from Physics Domain ontology (Hachem et al.
— MDS 2011) that formalizes how sensor data is use

expressedinUnit

KilometerHour

speed2state Soad

Instantaneous

producesState

Moving

© Giovanni Meroni 2018 POLITECNICO MILANO 1863

State detection rules ontology

*Ontology derived from Phy

© Giovanni Meroni 2018

ate Detection
Rule

main ontology (Hachem et al.

hasOutput

speed2state

m%en&")”“ data is usec

— MDS 2011) that formalizes

expressedinUnit

producesState

Moving

coords2speed

posdd

KilometerHour

Speed
Instantaneous

Coordinates
DD

Position

POLITECNICO MILANO 1863

Process monitorability assessment

*For each couple <artifact, state> in the process model, we
need to determine how many smart objects 55O can infer
that state based on their capabilities

*To do so, for each smart object ssothat embodies artifact,
the ontologies are gqueried to determine:

 |f a detection rule to infer state exists

« Which parameters are required by that rule

 |If the sensors on the smart object provide the required
parameters

*Then, the monitorability of <artifact, state> is computed
as. Mon™%5((artifact, state), I) — [0,1] = ‘SSO‘ /|SSO|

© Giovanni Meroni 2018 POLITECNICO MILANO 1863

Process monitorability assessment

Determine If truck AB123XY can infer <truck, still>:
M If a detection rule to infer still exists
« [Which parameters are required by that rule

- [If the sensors on AB2~°XY provide the required
parameters °

expressedinUnit
Parameter

speedinst

kmh esse)
—7 KilometerHour
aranpjeter
hasConce
Speed
Instantaneous
hasOutput

Coordinates
DD

Truck [~

posdd expressedinUnit——————

coords2speed hasConcept

© Giovanni Meroni 2018 POLlTECNlC\NO 1863

Process monitorability assessment

Determine If truck AB123XY can infer <truck, still>:
M If a detection rule to infer still exists
« M Which parameters are required by that rule

- [If the sensors on AB2~°XY provide the required
parameters °

expressedinUnit
Parameter

Truck [~

KilometerHour
asConce
Speed
Instantaneous

Coordinates
DD

posdd expressedinUnit——————

coords2speed

© Giovanni Meroni 2018 POLlTECNlC\NO 1863

Process monitorability assessment

Determine If truck AB123XY can infer <truck, still>:
« M If a detection rule to infer still exists

« M Which parameters are required m“‘“? rule

* M If the sensors on AB123XY.prav reguiret
parameters receiver DD

@ realizesArtifact) onPlatform
Quantity
Kind

Instantaneous

Truck

realizesArtifact =

AB123XY

-
onPlatform hasQuantityKind

KilometerHour
© Giovanni Meroni 2018 POLITECNICES e~ O 1863

Process monitorability assessment

*Once Mon4t5has been determined for every couple
<artifact, state>, the monitorability of the activation and the
termination of an activity is determined as:

ARS; j€A;.C3tart

Mon®(A;.C8% 1) —[0,1] = 1] MonP9(ARS; ;,I) (1)
ARS; k€A;.CSTOP
Mon® (A;.C5*P 1) — [0,1] = 11 MonB5(ARS; 1, I) (2)
*Then, the monitorability of an activity is:

1
Mon(A;, I) —[0,1] = 5 (MonC(Ai.CftC”"t,I) + MonC(Ai.CftOp,I))

Finally, the monitorabllity of the process is: «~4.ep A4
Mon" (P, 1) — [0,1] = > |AM;)TIJ}D‘(A“I)

© Giovanni Meroni 2018 POLITECNICO MILANO 1863

Process monitorability improvement

*To iImprove monitorability, three types of actions are
possible:

 Alter the process model to rely on different artifacts or
states to determine when activities are executed

« Improve the state detection rules
« Modify the smart objects introducing new sensors
*When altering the process model, for each couple

<artifact, state> that cannot be monitored, the ontologies
can suggest:

 Another state state’ for artifact such that:;
Mon "5 ((artifact, state’), 1) > 0

 Another artifact artifact such that
Mon 1 ((artifact’, state), I) > 0

© Giovanni Meroni 2018 POLITECNICO MILANO 1863

Process monitorability improvement

*To iImprove the state detection rules, the ontologies can detect
smart objects that:

« Cannot detect a state just because their sensors use a data
format different from the one required by the detection rule

« Cannot detect a state, but provide sensor data that can be used
to indirectly derive that state
By introducing a new detection rule similar to the existing one
except for the input parameters, these smart objects can detect
that state.
« This positively affects the monitorability of the process

*For smart objects that cannot provide sensor data to detect that
state, either directly or indirectly, the ontologies can suggest
which sensors should be introduced

© Giovanni Meroni 2018 POLITECNICO MILANO 1863

Process monitorability improvement

*Truck CD456WX provides the speed irwnil@s‘tip*er hour

hasQuantityKind .
L— Coordinates
hasUnit DD

GPS
Receiver

Smart Sensing i
realizesArtifact . onPlatfornt Device
Object onPlatform hasQuantityKind

Quantity
Kind

Plate Speed
Truck lizesArtifact==—— Instantaneous
Frea 1zes ITa AB]_23XY
>
onPlatform h;':\SQuantityKind ¢
Speedometer hasUnit MilesHour

© Giovanni Meroni 2018 POLITECNICO MILANO 1863

Process monitorability improvement

*Truck CD456WX provides the speed in miles per hour

*To detect <truck, still>, rule speed2state requires the speed to be
expressed in kilometers per hour

*Truck CD456WX cannot ust ™" _ed2state, so it cannot detect

Haslnput

<truck, still>

hasOutput

@ -assumesState: roducesstate usesParame te Parameter

expressedinUnit

Quantity
Kind

expressedinUnit:

KilometerHour
hasConcept,
Speed
Instantaneous

Moving . Coordinates
posdd expressedInUnit——— DD

Truck

coords2speed hasConcept

Position

© Giovanni Meroni 2018 POLITECNICO MILANO 1863

Process monitorability improvement

*Truck CD456WX provides the speed in miles per hour

*To detect <truck, still>, rule speed2state requires the speed to be
expressed in kilometers per hour

*Truck CD456WX cannot use speed2state, so it cannot detect
<truck, still>

*A new rule speed2state’ can be derived from speed2state by
converting the speed from miles per hour to kilometers per hour

*With speed2state’, Truck CD456WX can now detect <truck, still>

© Giovanni Meroni 2018 POLITECNICO MILANO 1863

Process monitorability improvement

*Truck EF789UV provides its own position in decimal degrees
coordinates

Position

/

hasQuantityKind S’ d
Coordinates
GPS P hasUnit

Receiver Do

hasUni

Smart Sensing
realizesArtifact . onPlatform Device
Object onPlatform hasQuantityKind
Plate
Truck realizesArtifact=—
EF789UV

© Giovanni Meroni 2018 POLITECNICO MILANO 1863

Quantity
Kind

Process monitorability improvement

*Truck EF789UV provides its own position in decimal degrees
coordinates

*To detect <truck, still>, rule speed2state requires the speed

*Truck EF789UV cannot use speed?2state, so it cannot detect
<truck, still> gi\

Haslnput

expressedinUnit

@ sssssss State roducesState usesParamete Parameter

Truck speed2state

expressedinUnit .
KilometerHour
asConce
Speed
Instantaneous

Moving ! Coordinates
posdd expressedinUnit———— oD

coords2speed hasConcept

Position

© Giovanni Meroni 2018 POLITECNICOU MiILANO 1863

Process monitorability improvement

e e R Ay e R TR AL
coordinates
*To detect <truck, still>, rule speed2state requires the speed

*Truck EF789UV cannot use speed?2state, so it cannot detect
<truck, still>

*However, speed can be @om the position b
formula coords2speed

@ -assumesState: roaucesstate usesParame te Parameter

Ing

expressedinUnit

Truck |

expressedinUnit .
KilometerHour
asConce
Speed
Instantaneous

Moving / Coordinates
dd 'bexpressedlnunit_'

DD
coords2speed

hasConcept

Position

© Giovanni Meroni 2018 POLITECNICO MILANO 1863

Process monitorability improvement

*Truck EF789UV provides its own position in decimal degrees
coordinates

*To detect <truck, still>, rule speed2state requires the speed

*Truck EF789UV cannot use speed?2state, so it cannot detect
<truck, still>

*However, speed can be derived from the position by using
formula coords2speed

*A new rule coords2state can be derived by combining
speed2state with coords2speed

*With coords2state, Truck CD456WX can now detect <truck, still>

© Giovanni Meroni 2018 POLITECNICO MILANO 1863

