
Artifact-driven Process Monitoring
Giovanni Meroni (supervisor Dr. Pierluigi Plebani)

Milan – June 26, 2018

© Giovanni Meroni 2018

Introduction

• Business process: “chain of events, activities and decisions” [A],
“a set of activities that are performed in coordination in an
organizational and technical environment” [B]

• Business process monitoring: tools and techniques to
determine:

• If activities are correctly executed

• If dependencies among activities are respected

• Artifact-driven process monitoring: a novel technique for
business process monitoring, that allows to:

• Autonomously collect information

• Determine violations at runtime

• Without human intervention

[A] Dumas, M., La Rosa, M., Mendling, J., Reijers, H.: Fundamentals of Business Process Management
[B] Weske, M.: Business Process Management

© Giovanni Meroni 2018

Agenda

• Motivations

• Idea: artifact-driven process monitoring

• Contributions:

– E-GSM modeling language

– Method to configure smart objects

– Monitorabilty assessment and improvement

– SMARTifact monitoring platform

• Dissemination

• Validation

• Conclusion & future work

Motivations

© Giovanni Meroni 2018

Context

• Many intra-organizational processes are becoming multi-

party:

– Portions of a process are outsourced to external

organizations

– Companies interact with goods without owning them

• Organizations are interested in monitoring the execution

of multi-party processes as a whole

– No guarantee that outsourced activities are performed as

agreed

– No guarantee that goods given to other companies are

manipulated as agreed

© Giovanni Meroni 2018

Motivating example

© Giovanni Meroni 2018

Motivating example

M
an

u
fa

ct
u

re
r

C
ar

ri
er

In
la

nd
 t

er
m

in
al

Drive to inland terminal

Manufacturer portion
started

Fill in
container

Truck reached
manufacturer

Container attached
to truck

Carrier portion
ended

Manufacturer portion
ended

Attach
container

Carrier portion
started

Drive to
manufacturer

Truck reached
manufacturer

Container attached
to truck

Travel on
highway

Take a break

Truck reached
Inland terminal

Container
delivered

Inspect
goods

Detach
container

Container
delivered

Truck reached
inland terminal

Midnight

Destination
reached

Container overheated

Process failed

Terminal portion
ended

Terminal portion
started

© Giovanni Meroni 2018

Problem statement

• Monitoring multi-party processes is challenging

– The process cannot (always) be interrupted

– Human operators may not provide feedback

Execution Monitoring

Goods
Organization s

BPMS
Process managerOperator

Activity-centric process model

Modifications
on the goods

Activity start/end
notifications

Execution violation
alerts

Corrective actions

Execution violation
alerts

Corrective actions

Start

A B
Stop

Service provider s
BPMS

A
ct

iv
it

y
st

ar
t/

e
n

d

n
o

ti
fi

ca
ti

o
n

s

P
ro

ce
ss

m

o
d

el

Operator s
terminal

Task List

Manager s
workstation

Alerts

Resolve
Instance 7: process model
overridden, monitoring halted

Instance 8: completed
successfully

Show results

Assigned tasks

Task A (instance 3)

Task B (instance 2)

Task A (instance 1)

Active tasks

Task B (instance 5)

Task A (instance 4)Start

Start

Start

End

End

Override process model

Activity start/end
notifications

Idea: artifact-driven process monitoring

© Giovanni Meroni 2018

Idea: artifact-driven process monitoring

• Goods participate in multi-party processes

– Goods belong to a specific organization

– Goods have visibility on activities

– The conditions of the goods can be altered by organizations

• Objects participating in a process are named artifacts

• Goods can be seen as artifacts

– For our purposes, goods = artifacts

• Idea: Artifact-driven process monitoring [1]

– Monitoring is directly performed on the artifacts

– The artifact “knows” when its conditions change

– The artifact “knows” when activities are executed

[1] Meroni, G.: Integrating the Internet of Things with Business Process Management: A Process-aware
Framework for Smart Objects. In: CAiSE 2015 Doctoral Consortium

© Giovanni Meroni 2018

Objectives

• Exploit the Internet of Things to monitor processes

• Make objects aware of the process

• Perform monitoring transparently and autonomously

Monitoring
Execution

Operator Goods
(smart objects)

Process manager

Artifact-centric process model

Modifications on
the goods

Monitoring
information

A
D

P
B

D

P

P
ro

ce
ss

m

o
d

el

Other goods
in the process

M
o

d
if

ic
a

ti
o

n
s

o
n

 t
h

e
go

o
d

s
Monitoring
information

Process execution status

Manager s
workstation

A
D

P

B
D

P

Task A was skipped

Task B is being executed

Process is running

© Giovanni Meroni 2018

Contributions

• Extended-GSM (E-GSM), a declarative language to

autonomously monitor business processes

• A method to configure smart objects for artifact-driven

monitoring

• A technique to formalize, assess and improve the

monitorability of a process

• SMARTifact, an artifact-driven monitoring platform prototype

Contributions

Extended-GSM modeling language

© Giovanni Meroni 2018

Limitations of activity-centric languages

• Activity-centric languages are unsuited for artifact-driven

process monitoring:

– Execution order must strictly adhere to the process definition

– An orchestrator must explicitly starts or ends activities

• Artifact-centric languages overcome these limitations [2]

– Only what is explicitly stated in the model is constrained

– Everything else is allowed

– Guard-Stage-Milestone is a good starting point

[2] Baresi, L., Meroni, G., Plebani, P.: A GSM-based approach for Monitoring Cross-Organization Business
Processes using Smart Objects. In: BPM 2015 Workshops.

© Giovanni Meroni 2018

Extended-GSM overview

• GSM provides the following constructs:

– Data Flow Guards to determine task activation

– Milestones to determine task termination

• E-GSM adds these additional constructs:

– Process Flow Guards to define the expected process flow

– Fault Loggers to determine if a task is unsuccessfully executed

Stage

D
Data Flow

Guard

P
Process Flow

Guard

Milestone

Fault Logger

© Giovanni Meroni 2018

Process monitoring perspectives

• E-GSM allows to monitor processes with respect to three

orthogonal perspectives:

– Execution status:

• unopened

• opened

• closed

– Execution outcome:

• regular

• faulty

– Execution compliance:

• on time

• out of order

• skipped
St

at
u

s

Outcome

© Giovanni Meroni 2018

Process monitoring perspectives

• E-GSM allows to monitor processes with respect to three

orthogonal perspectives:

– Execution status:

• unopened

• opened

• closed

– Execution outcome:

• regular

• faulty

– Execution compliance:

• on time

• out of order

• skipped
St

at
u

s

Outcome

© Giovanni Meroni 2018

Process monitoring perspectives

• E-GSM allows to monitor processes with respect to three

orthogonal perspectives:

– Execution status:

• unopened

• opened

• closed

– Execution outcome:

• regular

• faulty

– Execution compliance:

• on time

• out of order

• skipped
St

at
u

s

Outcome

© Giovanni Meroni 2018

Process monitoring perspectives

• E-GSM allows to monitor processes with respect to three

orthogonal perspectives:

– Execution status:

• unopened

• opened

• closed

– Execution outcome:

• regular

• faulty

– Execution compliance:

• on time

• out of order

• skipped
St

at
u

s

Outcome

Contributions

Method for configuring smart objects

© Giovanni Meroni 2018

Configuring smart objects for artifact-driven monitoring

• The adoption of E-GSM is not straightforward

– Artifact-centric languages are difficult to model

– Processes may already be modeled in BPMN

– Modelers don’t want to do the same task twice

• Multiple Smart Objects required to monitor the process

• Smart Objects may participate in a portion of the process

– Information exchanged before/after that portion is useless

• We propose a method to easily configure smart objects [3] [4] [5]

[3] Baresi, L., Meroni, G., Plebani, P.: Using the Guard-Stage-Milestone Notation for Monitoring BPMN-based
Processes. In: Enterprise, Business-Process and Information Systems Modeling 2016
[4] Meroni, G., Di Ciccio, C., Mendling, J.: Artifact-driven process monitoring: Dynamically binding real-world
objects to running processes. In: CAiSE-Forum-DC 2017
[5] Meroni, G., Baresi, L., Montali, M., Plebani, P.: Multi-party business process compliance monitoring
through IoT-enabled artifacts. In: Information Systems. Volume 73 (2018)

© Giovanni Meroni 2018

Configuring smart objects for artifact-driven monitoring

• Input: BPMN collaboration diagram

• Output:

– rules to dynamically bind and unbind smart objects

– E-GSM models to monitor:

• When activities composing the process are performed

• If the conditions of the smart object evolve as expected
Produce E-GSM models and binding criteria

Enrich BPMN
collaboration diagram

with artifacts
Derive BPMN

artifact-oriented
process view

Derive E-GSM
artifact lifecycle

model

Derive E-GSM
process model

Derive Artifact-
to-object

mapping criteria

Configure
smart object

BPMN
collaboration diagram

Enriched BPMN
collaboration diagram

BPMN
process diagram

E-GSM
process model

Artifact-to-object
mapping criteria

E-GSM artifact
lifecycle model

For each
artifact

© Giovanni Meroni 2018

Back to the motivating example

M
an

u
fa

ct
u

re
r

C
ar

ri
er

In
la

nd
 t

er
m

in
al

Drive to inland terminal

Manufacturer portion
started

Fill in
container

Truck reached
manufacturer

Container attached
to truck

Carrier portion
ended

Manufacturer portion
ended

Attach
container

Carrier portion
started

Drive to
manufacturer

Truck reached
manufacturer

Container attached
to truck

Travel on
highway

Take a break

Truck reached
Inland terminal

Container
delivered

Inspect
goods

Detach
container

Container
delivered

Truck reached
inland terminal

Midnight

Destination
reached

Container overheated

Process failed

Terminal portion
ended

Terminal portion
started

© Giovanni Meroni 2018

Step 1 – Enrich BPMN collaboration diagram
M

an
u

fa
ct

ur
er

C
ar

ri
er

In
la

n
d

 t
e

rm
in

a
l

Drive to inland terminal

Manufacturer portion
started

Fill in
container

Truck reached
manufacturer

Container attached
to truck

Carrier portion
ended

Terminal portion ended

Manufacturer portion ended

Attach
container

Carrier portion
started

Drive to
manufacturer

Truck reached
manufacturer

Container
delivered

Terminal portion
started

Inspect
goods

Detach
container

Container
delivered

Truck reached
inland terminal

Truck
[garage,moving]

Truck

Truck
[manufacturer,still]

Container

Container
[opened,unhooked]

Container
[closed,unhooked]

Container
[closed,hooked]

Truck
[manufacturer,moving]

Truck
[inlandterminal,still]

Truck
[highway,still]

Truck
[highway,moving]

Container
[opened,hooked]

Container
[closed,hooked]

Container
[closed,unhooked]

Container attached
to truck

Travel on
highway

Take a break

Truck reached
Inland terminal

Midnight

Destination
reached

Container overheated

Process failed

Container
[overheated]

Truck
[inlandterminal,moving]

© Giovanni Meroni 2018

Step 1 – Enrich BPMN collaboration diagram
M

an
u

fa
ct

ur
er

C
ar

ri
er

In
la

n
d

 t
e

rm
in

a
l

Drive to inland terminal

Manufacturer portion
started

Fill in
container

Truck reached
manufacturer

Container attached
to truck

Carrier portion
ended

Terminal portion ended

Manufacturer portion ended

Attach
container

Carrier portion
started

Drive to
manufacturer

Truck reached
manufacturer

Container
delivered

Terminal portion
started

Inspect
goods

Detach
container

Container
delivered

Truck reached
inland terminal

Truck
[garage,moving]

Truck

Truck
[manufacturer,still]

Container

Container
[opened,unhooked]

Container
[closed,unhooked]

Container
[closed,hooked]

Truck
[manufacturer,moving]

Truck
[inlandterminal,still]

Truck
[highway,still]

Truck
[highway,moving]

Container
[opened,hooked]

Container
[closed,hooked]

Container
[closed,unhooked]

Container attached
to truck

Travel on
highway

Take a break

Truck reached
Inland terminal

Midnight

Destination
reached

Container overheated

Process failed

Container
[overheated]

Truck
[inlandterminal,moving]

Fill in
container

Container
[opened,unhooked]

Container
[closed,unhooked]

© Giovanni Meroni 2018

Step 2 – Derive BPMN process view

Drive to inland terminal

Drive to inland terminal

Par

Seq

Loop EExc

Par

EExc

Seq

Loop

Process
started

Fill in
container

Carrier portion ended

Attach
container

Carrier portion started

Inspect
goods

Detach
container

Truck

Truck
[manufacturer,still]

Container
[opened,unhooked]

Container
[closed,unhooked]

Container
[closed,hooked]

Truck
[manufacturer,moving]

Truck
[inlandterminal,still]

Truck
[highway,still]

Truck
[highway,moving]

Container
[opened,hooked]

Container
[closed,hooked]

Container
[closed,unhooked]

Drive
started

Travel on
highway

Take a break

Drive
ended

Midnight

Destination
reached

Container overheated

Container
[overheated]

Process
ended

Process
started

Drive to
manufacturer

Terminal portion ended

Attach
container

Manufacturer portion started

Detach
container

Container

Truck
[manufacturer,still]

Container
[closed,unhooked]

Container
[closed,hooked]

Truck
[manufacturer,moving]

Truck
[Inlandterminal,still]

Truck
[highway,still]

Truck
[highway,moving]

Container
[closed,unhooked]

Drive
started

Travel on
highway

Take a break

Drive
ended

Midnight

Destination
reached

Container overheated

Container
[overheated]

Process
ended

Truck
[garage,moving]

Process failed

Process failed

Truck
[inlandterminal,moving]

Truck
[inlandterminal,moving]

© Giovanni Meroni 2018

Step 3a – Derive the E-GSM process model

LoopContainer
[closed,hooked]

Truck
[manufacturer,moving]

Truck
[Inlandterminal,still]

Truck
[highway,still]

Truck
[highway,moving]

Drive
started

Travel on
highway

Take a break

Drive
ended

Midnight

Destination
reached

Loop

Ite

TravelOn
Highway

D

DFG1: on container_e or truck_e if
container[c,h] and (truck[m,m] or

truck[h,m])

M1: on truck_l if
truck[i,s] or
truck[h,s]

PPFG1: not TravelOnHighway.M1

TakeBreak
D

DFG1: on container_e or truck_e if
container[c,h] and truck[h,s])

M1: on truck_l if
truck[h,m]

PPFG1: TravelOnHighway.M1
and (00 < Date.hour < 01) and

not TakeBreak.M1

M1: if TravelOnHighway.M1
and truck[i,s]
and not Active(TakeBreak)

M2: if TravelOnHighway.M1
and (TakeBreak.M1
and (00 < Date.hour < 01))

D

DFG1: on container_e or
truck_e if container[c,h] and

(truck[m,m] or truck[h,m])

D

DFG2: on container_e or
truck_e if container[c,h]

and truck[h,s])

D

DFG1: on container_e or
truck_e if container[c,h] and

(truck[m,m] or truck[h,m])

D

DFG2: on container_e or
truck_e if container[c,h] and

truck[h,s])

M1: on
+Ite.M1

Drive
Started

DDFG1: on drive_started M1: on
drive_started

PPFG1: not DriveStarted.M1

Drive
Ended

DDFG1: on drive_ended M1: on
drive_ended

P
PFG1: Loop.M1 and not

DriveEnded.M1

P
PFG1: DriveStarted.M1 and not

Loop.M1

© Giovanni Meroni 2018

Step 3b – Derive E-GSM artifact lifecycle model

[opened,unhooked]

[closed,unhooked]

[closed,hooked]

[opened,hooked]

[overheated]

Opened
Unhooked

DDFG1: on container_l if container[o,u] M1: on container_e
if not container[o,u]

Closed
Unhooked

DDFG1: on container_l if container[c,u]
M1: on container_e
if not container[c,u]

PPFG1: Active(OpenedUnhooked) or
Active(ClosedHooked)

Closed
Hooked

DDFG1: on container_l if container[c,h]
M1: on container_e
if not container[c,h]

PPFG1: Active(ClosedUnhooked) or
Active(OpenedHooked)

Opened
Hooked

DDFG1: on container_l if container[o,h]
M1: on container_e
if not container[o,h]

PPFG1: Active(ClosedHooked)

Overheated
DDFG1: on container_l if container[t]

M1: on container_e
if not container[t]

PPFG1: Active(ClosedHooked)

Final
D

DFG1: if Active(ClosedUnhooked)
or Active(Overheated)

M1: if not
(Active(ClosedUnhooked)
or Active(Overheated))

P
PFG1: not Active(ClosedUnhooked) or Active

(ClosedHooked) or Active(OpenedHooked) or
(Active(Overheated) or active(Error))

Error
D

DFG1: on container_l if not (container[o,u] or
container[c,u] or container[c,h] or

container[o,h] or container[t])

M1: on container_e
if (container[o,u] or
container[c,u] or
container[c,h] or
container[o,h] or
container[t])

PPFG1: false

© Giovanni Meroni 2018

Step 3c – Derive mapping criteria

<LocalArtifact name="Container"/>

<Mapping><Artifact name="Truck">

<BindingEvent id="Carrier_portion_started"/>

<UnbindingEvent id="Carrier_portion_ended"/>

<UnbindingEvent id="Process_failed"/>

</Artifact></Mapping>

Drive to inland terminalPar

EExc

Seq

Loop

Process
started

Fill in
container

Carrier portion ended

Attach
container

Carrier portion started

Inspect
goods

Detach
container

Truck

Truck
[manufacturer,still]

Container
[opened,unhooked]

Container
[closed,unhooked]

Container
[closed,hooked]

Truck
[manufacturer,moving]

Truck
[inlandterminal,still]

Truck
[highway,still]

Truck
[highway,moving]

Container
[opened,hooked]

Container
[closed,hooked]

Container
[closed,unhooked]

Drive
started

Travel on
highway

Take a break

Drive
ended

Midnight

Destination
reached

Container overheated

Container
[overheated]

Process
ended

Process failed

Truck
[inlandterminal,moving]

Contributions

Monitorability assessment and improvement

© Giovanni Meroni 2018

Monitorability of a process

• Not all smart objects are suited to monitor a process

• The monitorability of a process indicates how many activities

in a process can be monitored by smart objects [6]

• The capabilities of the Smart Objects affect monitorability

– The execution of activities is determined by the state of the smart

objects

– The state of a smart object is inferred from its physical properties

– The physical properties of a smart object are measured by

sensors

[6] Meroni, G., Plebani, P.: Artifact-Driven Monitoring for Human-Centric Business Processes with Smart
Devices: Assessment and Improvement. In: BPM Forum 2017

© Giovanni Meroni 2018

Assessing and improving monitorability

• We exploit ontologies to formalize:

– Sensor data provided by smart objects

– Rules to derive the state of an artifact from sensor data

• We then query the ontologies to:

– Compute the monitorability of activities

– Derive the monitorability of the process

– Suggest modifications to improve monitorability:

• Which sensors should be added to smart objects

• Which rules can be easily altered to exploit other sensor

data

Contributions

SMARTifact monitoring platform prototype

© Giovanni Meroni 2018

SMARTifact – An artifact-driven monitoring platform

Monitoring Platform

MQTT Broker

Truck AB123XY

Pu
b

lis
h

/Truck/ab123xy /Container/sn9876 /Process/inst1

REST API

On-board
Sensors

Events
Processor

Node-RED flow

Events Router

 –––––––––

 –––––– ––––––––

 –––––– ––––––––

 ––––––––– –––––––––

 ––––––

 –––––– ––––––––

 –––––– ––––––––

 ––––––––– –––––––––

 –––––– ––––––––

 ––––––––– –––––––––

 ––––––

 –––––– ––––––––

 –––––– ––––––––

 ––––––––– –––––––––

 ––––––

Artifact-to-object
mapping criteria

E-GSM Engine

––––––

––

––––––

–––––––

DP

P

––––––

–––––––

D

––––––

–––––––

D

D

D

P

––––––

–––––––

D

P

P

E-GSM process model

Su
bs

cr
ib

e

N
o

ti
fy

Su
bs

cr
ib

e

N
o

ti
fy

Container SN9876

P
u

b
lis

h

Su
bs

cr
ib

e

N
o

ti
fy

Su
bs

cr
ib

e

N
o

ti
fy

Organization
Information

System

Publish

Operator

C
o

n
fi

gu
re

In
te

ra
ct

 w
it

h

Sensor
data

Local
state

changes

State
changes

[7] Baresi, L., Di Ciccio, C., Mendling, J., Meroni, G., Plebani, P.: mArtifact: an Artifact-driven Process
Monitoring Platform. In: BPM 2017 Demo Track and BPM Dissertation Award

© Giovanni Meroni 2018

SMARTifact – An artifact-driven monitoring platform

Validation

© Giovanni Meroni 2018

Validating SMARTifact – Simulated environment

• Eight shipment processes provided by a large European

logistics company [8]

• Two datasets related to 77 shipments

– Dataset 1: position and speed of trucks (19966 entries)

– Dataset 2: activation and termination of activities in shipment

processes, manually notified by truck drivers (815 entries)

• Dataset 1 was replayed on SMARTifact

• The results of the monitoring were compared with Dataset 2

– Over 93% of the shipments were correctly monitored

– SMARTifact detected more activities than manual notifications

– Detection delay was less than 5 minutes w.r.t. 533 minutes uptime

[8] Meroni, G., Di Ciccio, C., Mendling, J.: An Artifact-Driven Approach to Monitor Business Processes
Through Real-World Objects. In: ICSOC 2017

© Giovanni Meroni 2018

Validating SMARTifact – Field evaluation

• Equipped my briefcase with an Intel

Galileo SBC and a GPS receiver

• Monitored for 4 months the process of

going to work and back home

• Almost 95% of the process

instances were correctly identified

• The median detection delay was

less than 2 minutes, while the

processes lasted on average

102 minutes

VA-MI
started

Walk to VA
railway stations

Take VA Nord –
MI C. train

Take VA FS – MI
G. train

Take subway

VA-MI
ended

August

Walk to
office

September
to July

MI-VA
started

Walk to MI
subway stations

Take MI G. –
VA FS train

Take MI C. –
VA Nord train

Take subway

MI-VA
ended

6th of the month

Walk to
house

not 6th of the month

Briefcase
[House]

Briefcase
[VANord]

Briefcase
[VAFS]

Briefcase
[MICadorna]

Briefcase
[MIGaribaldi]

Briefcase
[MIPiola]

Briefcase
[MILambrate]

Briefcase
[Office]

Briefcase

Briefcase
[Office]

Briefcase
[MILambrate]

Briefcase
[MIGaribaldi]

Briefcase
[VAFS]

Briefcase
[VANord]

Briefcase
[MICadorna]

Briefcase
[MIPiola]

Briefcase
[House]

Briefcase

Dissemination

© Giovanni Meroni 2018

Publications

• Meroni, G.: Integrating the Internet of Things with Business Process Management: A Process-aware Framework for

Smart Objects. In: CAiSE 2015 Doctoral Consortium. CEUR Workshop Proceedings, pp 56-64. CEUR-WS.org

(2015)

• Baresi, L., Meroni, G., Plebani, P.: A GSM-based approach for Monitoring Cross-Organization Business Processes

using Smart Objects. In: BPM 2015 Workshops. LNBIP, pp 389-400. Springer International Publishing (2016)

• Baresi, L., Meroni, G., Plebani, P.: Using the Guard-Stage-Milestone Notation for Monitoring BPMN-based

Processes. In: Enterprise, Business-Process and Information Systems Modeling 2016. LNBIP, pp.18-33. Springer

International Publishing (2016)

• Baresi, L., Meroni, G., Plebani, P.: On Handling Business Process Anomalies through Artifact-based Modeling. In:

CAiSE-Forum 2016. CEUR Workshop Proceedings, pp 9-16. CEUR-WS.org (2016)

• Meroni, G., Di Ciccio, C., Mendling, J.: Artifact-driven process monitoring: Dynamically binding real-world objects to

running processes. In: CAiSE-Forum-DC 2017. CEUR Workshop Proceedings, pp. 105–112. CEUR-WS.org (2017)

• Meroni, G., Plebani, P.: Artifact-Driven Monitoring for Human-Centric Business Processes with Smart Devices:

Assessment and Improvement. In: BPM Forum 2017. LNBIP, pp 160-176. Springer International Publishing (2017)

• Baresi, L., Di Ciccio, C., Mendling, J., Meroni, G., Plebani, P.: mArtifact: an Artifact-driven Process Monitoring

Platform. In: BPM 2017 Demo Track and BPM Dissertation Award. CEUR Workshop Proceedings, CEUR-WS.org

(2017)

• Meroni, G., Di Ciccio, C., Mendling, J.: An Artifact-Driven Approach to Monitor Business Processes Through

Real-World Objects. In: Service-Oriented Computing - ICSOC 2017. LNCS, pp. 297–313. Springer International

Publishing (2017)

• Meroni, G., Baresi, L., Montali, M., Plebani, P.: Multi-party business process compliance monitoring through

IoT-enabled artifacts. In: Information Systems. Volume 73, pp. 61 – 78. Elsevier (2017)

Conclusion & future work

© Giovanni Meroni 2018

Conclusion

• Artifact-driven process monitoring can effectively monitor inter-

organizational processes

– The IoT makes physical objects smart

– Operators no longer have to send notifications

– Violations can be autonomously detected

– Monitoring is continuous, without human intervention

– The SMARTifact platform proved the applicability of this approach

• The information required for artifact-driven monitoring can be

derived from BPMN models

– An E-GSM model, to introduce flexibility

– Criteria to bind and unbind smart objects to running processes

© Giovanni Meroni 2018

Future Work

• Integrating artifact-driven process monitoring with blockchain

to achieve trusted monitoring [9]

• Introducing mechanisms to make monitoring robust when

network communications are unreliable [10]

• Exploring the capabilities of 5G mobile networks

• Implementing corrective actions to compensate loss and delay

• Investigating on distributed consistency among smart objects

[9] Meroni, G., Plebani, P.: Combining Artifact-Driven Monitoring with Blockchain: Analysis and Solutions. In:
CAiSE 2018 Workshops
[10] Meroni, G., Plebani, P., Baresi, L.: Introducing Eventual Consistency in Artifact-driven Process
Monitoring. Paper submitted to EDOC 2018

Thanks for your attention

This PhD has been funded by the Italian Project ITS2020

under the Technological National Clusters program

Backup slides

© Giovanni Meroni 2018

E-GSM Stage lifecycle

• E-GSM allows to monitor processes with respect to three
orthogonal dimensions:
• Execution

status:

• Unopened

• Opened

• Closed

• Execution
outcome:

• Regular

• Faulty

• Execution
compliance:

• OnTime

• OutOfOrder

• Skipped

OnTime

OutOfOrder

Regular

Faulty

Regular

Faulty

Skipped

Regular

Unopened

Closed Opened

Closed Opened

Closed Opened

Closed Opened

(S DFGi: S S) and (Active(S) or S.Mj in S PFGk)

S.FLl

S.DFGi and not S.PFGk

S.DFGi and S.PFGk

+S.Mj

+S.Mj

S.FLl

+S.Mj

+S.Mj

(S.DFGi or -S.Mj) and not S.PFGk

(S.DFGi or -S.Mj) and not S.PFGk

(S.DFGi or -S.Mj) and S.PFGk

(S.DFGi or -S.Mj) and S.PFGk

S.DFGi or -S.Mj

S.DFGi or -S.Mj

Unopened

S.DFGi

© Giovanni Meroni 2018

Basic translation rules

•Each activity is translated into a Stage with one or more DFG

and one or more M

•Each event is translated into a Stage with a DFG and a M

capturing the occurrence of the event

•Each non-interrupting boundary event is translated into a FL

•Each interrupting boundary event is translated into a FL and a M

48

A

A FL1: on e

E
DDFG1: on e M1: on e

A Me: on e
FL1: on e

e

DDFG1: [A_s] M1: [A_t]

DDFG1: [A_s] M1: [A_t] DDFG1: [A_s] M1: [A_t]
A

e

A

e

A

e e

© Giovanni Meroni 2018

Translating the normal flow

• Identification of process
blocks
• Single inbound and single

outbound control flows

• Can be nested

• Five process blocks:
Sequence, Parallel,
Conditional exclusive,
Conditional exclusive, Loop

• Each block is translated into
an E-GSM stage
• DFG, PFG an M depend on

the nature of the block

• Inner blocks become inner
stages

Loop

Ite

Seq

a

b

a

b

A

M1:
[A_t]

F
P

PFG1: A.M1
and not F.M1

M1:
on f

M1: if E.M1 and A.M1 and F.M1DDFG1: on e

DDFG1: [A_s]

DDFG1: on f

DDFG2: [A_s]

Exc

A
P

PFG1: a and not A.M1
and not Active(B)

M1:
[A_t]

B
P

PFG1: b and not B.M1
and not Active(A)

M1:
[B_t]

M1: if ((A.M1 and a) or (B.M1 and
b)) and not (Active(A) or Active(B))

DDFG1: [A_s]
DDFG1: [A_s]

DDFG1: [B_s]

DDFG2: [B_s]

Par

A

M1:
[A_t]

B

M1:
[B_t]

M1: if A.M1 and B.M1DDFG1: [A_s]

DDFG1: [B_s]

DDFG1: [A_s]

DDFG2: [B_s]

Inc

A

M1:
[A_t]

B

M1:
[B_t]

M1: if ((A.M1 and a) or not a)
and ((B.M1 and b) or not b) and
not (Active(A) or Active(B))

DDFG1: [A_s]
DDFG1: [A_s]

DDFG1: [B_s]

DDFG2: [B_s]

c

b

A

M1:
[A_t]

B

M1:
[B_t]

M1: on
+Ite.M1

DDFG1: [A_s]
DDFG1: [A_s]

DDFG1: [B_s]

DDFG2: [B_s]

P
PFG1: A.M1 and
b and not B.M1

P
PFG1:

not A.M1

P
PFG1: E.M1

and not A.M1

PPFG1: not A.M1

PPFG1: not B.M1

PPFG1: b and not B.M1

PPFG1: a and not A.M1

DDFG1: [A_s]

DDFG2: [B_s]

M1: if A.M1 and c
and not Active(B)

M2: if A.M1
and (B.M1 and b)

E

M1:
on e

DDFG1: on e

PPFG1: not E.M1

DDFG3: on f
A

fe

A

B

A

B

A

B

A

B

49

© Giovanni Meroni 2018

Translating the exceptional flow

• Exceptional flow is alternative to normal flow

• Originates from interrupting boundary events

• Can go either in the same or in the opposite direction wrt normal

flow

• Must be merged with normal flow with an exclusive merge

gateway.

• Exceptional flow runs in parallel with the normal flow

• Originates from non-interrupting boundary events

• Must be merged with normal flow with an inclusive merge

gateway

50

© Giovanni Meroni 2018

Translating the exceptional flow

• Three exceptional
blocks definable
• Forward exception

handling

• Backward exception
handling

• Non-interrupting
exception handling

• They behave similarly
to Conditional
exclusive, Loop and
Conditional inclusive
blocks, respectively

ELoop

Ite

EExc

B
P

PFG1: not A.Me and not
B.M1 and not Active(C)

M1:
[B_t]

C
P

PFG1: A.Me and not
C.M1 and not Active(B)

M1:
[C_t]

M1: if ((C.M1 and A.Me) or
(B.M1 and not A.Me)) and
not (Active(C) or Active(B))

D
DFG1:
[B_s] DDFG1: [B_s]

DDFG1: [C_s]

D
DFG2:
[C_s]

EInc

A
M1: [A_t]

M1: if A.M1 and
not Active(B)

DDFG1: [A_s]
DDFG1: [A_s]

DDFG2: [B_s]

B
PPFG1: Active(A)

M1: [B_t]DDFG1: [B_s]

FL1 on e

AP
PFG1: not

(A.Me or A.M1)

M1:
[A_t]

B
P

PFG1: (A.Me or
A.M1) and A.Me

and not B.M1

M1:
[B_t]

M1: on
+Ite.M1

DDFG1: [A_s]
DDFG1: [A_s]

DDFG1: [B_s]

DDFG2: [B_s]

Me:
on e

FL1:
on e

DDFG1: [A_s]

DDFG2: [B_s]

M1: if (A.Me or A.M1)
and not A.Me
and not Active(B)

M2: if (A.Me or A.M1)
and A.Me and B.M1

PPFG1: not A.M1

A Me:
on e

DDFG1: [A_s]
M1:
[A_t]

FL1:
on e

P
PFG1: (A.Me or A.M1)

and not EExc.M1

A B

e

C

A

e

B

A

e

B

© Giovanni Meroni 2018

Translation by Example

Seq1

Inventory

Inventory
Shipment_req.BOM

Inventory =
Shipment_req.BOM

Delivery outcome

EExc

ShipTo

Consumer

M1:
[ShipToConsumer_t]

D
DFG1:

[ShipToConsumer_s]

Discard

Goods

M1:
[DiscardGoods_t]

D
DFG1:

[DiscardGoods_s]

M1: if
((ShipToConsumer.M1
and not
StoreInWarehouse.Me)
or (DiscardGoods.M1 and
StoreInWarehouse.Me))
and not
(Active(ShipToConsumer)
or Active(DiscardGoods))

D
DFG1:

[ShipToConsumer_s]

P
PFG1: (StoreInWarehouse.M1

or StoreInWarehouse.Me) and
not EExc.M1

D
DFG2:

[DiscardGoods_s]
P

PFG1: not StoreInWarehouse.Me
and not ShipToConsumer.M1
and not Active(DiscardGoods)

P
PFG1: StoreInWarehouse.Me and

not DiscardGoods.M1
and not Active(ShipToConsumer)

Delivery

Outcome

M1: on MessageSent
if body:delivery_outcome

D
DFG1: on MessageSent

if body:delivery_outcome

PPFG1: EExc.M1
 and not DeliveryOutcome.M1

Loop
Ite
Seq2

Load
Goods

D
DFG1:

[LoadGoods_s]
M1:
[LoadGoods_t]

Locate
Missing
GoodsP

PFG1: Seq2.M1 and
inventory!=shipment_req.BOM

 and not LocateMissingGoods.M1

M1: if Seq2.M1
and inventory=
shipment_req.BOM
and not Active(
LocateMissingGoods)

PPFG1: not Seq2.M1
M2: if Seq2.M1 and
CollectMissing
Goods.M1 and
inventory!=
shipment_req.BOM

M1: on
+Ite.M1

Shipment
Req

D
DFG1: on MessageReceived

if body:shipment_req
M1: on Message
if body:shipment_req

PPFG1: not
ShipmentReq.M1

Inventory

M1: on
MessageSent
if body:
inventory

D
DFG1: on MessageSent

if body:inventory

PPFG1: LoadGoods.M1
 and not Inventory.M1

PPFG1: not
LoadGoods.M1

D
DFG1:

[LoadGoods_s]

D

DFG2: on
MessageSent

if body:inventory

D
DFG1:

[LoadGoods_s]

D
DFG2: on

MessageSent
if body:inventory

D
DFG1:

[LocateMissingGoods_s]
M1:
[LocateMissingGoods_t]

D
DFG3: [Locate

MissingGoods_s]

M1: if
LoadGoods.M1
and Inventory.M1

D
DFG1:

[LoadGoods_s]

D
DFG2: on

MessageSent
if body:inventory

D
DFG3: [Locate

MissingGoods_s]

ShipTo
Terminal

D
DFG1:

[ShipToTerminal_s]
M1:
[ShipToTerminal_t]

PPFG1:Loop.M1 and not
ShipToTerminal.M1

StoreIn
Warehouse

D
DFG1:

[StoreInWarehouse_s]
M1:
[StoreInWarehouse_t]

FL1: on NewSensorValue
if Temperature: > 20°C

P
PFG1: ShipToTerminal.M1 and
not (StoreInWarehouse.M1 or

StoreInWarehouse.Me)

Me: on NewSensorValue
if Temperature: > 20°C

P
PFG1:

ShipmentReq.M1
and not Loop.M1

D

DFG1: on
MessageReceived

if body:shipment_req

D
DFG2:

[LoadGoods_s]

D
DFG3: on MessageSent

if body:inventory

D
DFG4:

[LocateMissingGoods_s]

D
DFG5:

[ShipToTerminal_s]

D
DFG6:

[StoreInWarehouse_s]

D
DFG7:

[ShipToConsumer_s]

D
DFG8:

[DiscardGoods_s]

D
DFG9: on MessageSent

if body:
delivery_outcome

M1: if
ShipmentReq.M1 and
Loop.M1 and
ShipToTerminal.M1 and
(StoreInWarehouse.M1 or
StoreInWarehouse.Me) and
EExc.M1 and
DeliveryOutcome.M1

Locate missing
goods

Load goods
Ship to

terminal
Store in

warehouse

Goods damaged:
On NewSensorSample:
If Temperature > 0°C

Discard
goods

Ship to
consumer

Shipment req

52

© Giovanni Meroni 2018

Seq1

Inventory

Inventory
Shipment_req.BOM

Inventory =
Shipment_req.BOM

Delivery outcome

EExc

ShipTo

Consumer

M1:
[ShipToConsumer_t]

D
DFG1:

[ShipToConsumer_s]

Discard

Goods

M1:
[DiscardGoods_t]

D
DFG1:

[DiscardGoods_s]

M1: if
((ShipToConsumer.M1
and not
StoreInWarehouse.Me)
or (DiscardGoods.M1 and
StoreInWarehouse.Me))
and not
(Active(ShipToConsumer)
or Active(DiscardGoods))

D
DFG1:

[ShipToConsumer_s]

P
PFG1: (StoreInWarehouse.M1

or StoreInWarehouse.Me) and
not EExc.M1

D
DFG2:

[DiscardGoods_s]
P

PFG1: not StoreInWarehouse.Me
and not ShipToConsumer.M1
and not Active(DiscardGoods)

P
PFG1: StoreInWarehouse.Me and

not DiscardGoods.M1
and not Active(ShipToConsumer)

Delivery

Outcome

M1: on MessageSent
if body:delivery_outcome

D
DFG1: on MessageSent

if body:delivery_outcome

PPFG1: EExc.M1
 and not DeliveryOutcome.M1

Loop
Ite
Seq2

Load
Goods

D
DFG1:

[LoadGoods_s]
M1:
[LoadGoods_t]

Locate
Missing
GoodsP

PFG1: Seq2.M1 and
inventory!=shipment_req.BOM

 and not LocateMissingGoods.M1

M1: if Seq2.M1
and inventory=
shipment_req.BOM
and not Active(
LocateMissingGoods)

PPFG1: not Seq2.M1
M2: if Seq2.M1 and
CollectMissing
Goods.M1 and
inventory!=
shipment_req.BOM

M1: on
+Ite.M1

Shipment
Req

D
DFG1: on MessageReceived

if body:shipment_req
M1: on Message
if body:shipment_req

PPFG1: not
ShipmentReq.M1

Inventory

M1: on
MessageSent
if body:
inventory

D
DFG1: on MessageSent

if body:inventory

PPFG1: LoadGoods.M1
 and not Inventory.M1

PPFG1: not
LoadGoods.M1

D
DFG1:

[LoadGoods_s]

D

DFG2: on
MessageSent

if body:inventory

D
DFG1:

[LoadGoods_s]

D
DFG2: on

MessageSent
if body:inventory

D
DFG1:

[LocateMissingGoods_s]
M1:
[LocateMissingGoods_t]

D
DFG3: [Locate

MissingGoods_s]

M1: if
LoadGoods.M1
and Inventory.M1

D
DFG1:

[LoadGoods_s]

D
DFG2: on

MessageSent
if body:inventory

D
DFG3: [Locate

MissingGoods_s]

ShipTo
Terminal

D
DFG1:

[ShipToTerminal_s]
M1:
[ShipToTerminal_t]

PPFG1:Loop.M1 and not
ShipToTerminal.M1

StoreIn
Warehouse

D
DFG1:

[StoreInWarehouse_s]
M1:
[StoreInWarehouse_t]

FL1: on NewSensorValue
if Temperature: > 20°C

P
PFG1: ShipToTerminal.M1 and
not (StoreInWarehouse.M1 or

StoreInWarehouse.Me)

Me: on NewSensorValue
if Temperature: > 20°C

P
PFG1:

ShipmentReq.M1
and not Loop.M1

D

DFG1: on
MessageReceived

if body:shipment_req

D
DFG2:

[LoadGoods_s]

D
DFG3: on MessageSent

if body:inventory

D
DFG4:

[LocateMissingGoods_s]

D
DFG5:

[ShipToTerminal_s]

D
DFG6:

[StoreInWarehouse_s]

D
DFG7:

[ShipToConsumer_s]

D
DFG8:

[DiscardGoods_s]

D
DFG9: on MessageSent

if body:
delivery_outcome

M1: if
ShipmentReq.M1 and
Loop.M1 and
ShipToTerminal.M1 and
(StoreInWarehouse.M1 or
StoreInWarehouse.Me) and
EExc.M1 and
DeliveryOutcome.M1

Locate missing
goods

Load goods
Ship to

terminal
Store in

warehouse

Goods damaged:
On NewSensorSample:
If Temperature > 0°C

Discard
goods

Ship to
consumer

Shipment req

Goods damaged:
On NewSensorSample:
If Temperature > 0°C

Translation by Example

Activities

53

Load
Goods

D
DFG1:

[LoadGoods_s]
M1:
[LoadGoods_t]

StoreIn
Warehouse

D
DFG1:

[StoreInWarehouse_s]
M1:
[StoreInWarehouse_t]

FL1: on NewSensorValue
if Temperature: > 20°C

Me: on NewSensorValue
if Temperature: > 20°C

© Giovanni Meroni 2018

Seq1

Inventory

Inventory
Shipment_req.BOM

Inventory =
Shipment_req.BOM

Delivery outcome

EExc

ShipTo

Consumer

M1:
[ShipToConsumer_t]

D
DFG1:

[ShipToConsumer_s]

Discard

Goods

M1:
[DiscardGoods_t]

D
DFG1:

[DiscardGoods_s]

M1: if
((ShipToConsumer.M1
and not
StoreInWarehouse.Me)
or (DiscardGoods.M1 and
StoreInWarehouse.Me))
and not
(Active(ShipToConsumer)
or Active(DiscardGoods))

D
DFG1:

[ShipToConsumer_s]

P
PFG1: (StoreInWarehouse.M1

or StoreInWarehouse.Me) and
not EExc.M1

D
DFG2:

[DiscardGoods_s]
P

PFG1: not StoreInWarehouse.Me
and not ShipToConsumer.M1
and not Active(DiscardGoods)

P
PFG1: StoreInWarehouse.Me and

not DiscardGoods.M1
and not Active(ShipToConsumer)

Delivery

Outcome

M1: on MessageSent
if body:delivery_outcome

D
DFG1: on MessageSent

if body:delivery_outcome

PPFG1: EExc.M1
 and not DeliveryOutcome.M1

Loop
Ite
Seq2

Load
Goods

D
DFG1:

[LoadGoods_s]
M1:
[LoadGoods_t]

Locate
Missing
GoodsP

PFG1: Seq2.M1 and
inventory!=shipment_req.BOM

 and not LocateMissingGoods.M1

M1: if Seq2.M1
and inventory=
shipment_req.BOM
and not Active(
LocateMissingGoods)

PPFG1: not Seq2.M1
M2: if Seq2.M1 and
CollectMissing
Goods.M1 and
inventory!=
shipment_req.BOM

M1: on
+Ite.M1

Shipment
Req

D
DFG1: on MessageReceived

if body:shipment_req
M1: on Message
if body:shipment_req

PPFG1: not
ShipmentReq.M1

Inventory

M1: on
MessageSent
if body:
inventory

D
DFG1: on MessageSent

if body:inventory

PPFG1: LoadGoods.M1
 and not Inventory.M1

PPFG1: not
LoadGoods.M1

D
DFG1:

[LoadGoods_s]

D

DFG2: on
MessageSent

if body:inventory

D
DFG1:

[LoadGoods_s]

D
DFG2: on

MessageSent
if body:inventory

D
DFG1:

[LocateMissingGoods_s]
M1:
[LocateMissingGoods_t]

D
DFG3: [Locate

MissingGoods_s]

M1: if
LoadGoods.M1
and Inventory.M1

D
DFG1:

[LoadGoods_s]

D
DFG2: on

MessageSent
if body:inventory

D
DFG3: [Locate

MissingGoods_s]

ShipTo
Terminal

D
DFG1:

[ShipToTerminal_s]
M1:
[ShipToTerminal_t]

PPFG1:Loop.M1 and not
ShipToTerminal.M1

StoreIn
Warehouse

D
DFG1:

[StoreInWarehouse_s]
M1:
[StoreInWarehouse_t]

FL1: on NewSensorValue
if Temperature: > 20°C

P
PFG1: ShipToTerminal.M1 and
not (StoreInWarehouse.M1 or

StoreInWarehouse.Me)

Me: on NewSensorValue
if Temperature: > 20°C

P
PFG1:

ShipmentReq.M1
and not Loop.M1

D

DFG1: on
MessageReceived

if body:shipment_req

D
DFG2:

[LoadGoods_s]

D
DFG3: on MessageSent

if body:inventory

D
DFG4:

[LocateMissingGoods_s]

D
DFG5:

[ShipToTerminal_s]

D
DFG6:

[StoreInWarehouse_s]

D
DFG7:

[ShipToConsumer_s]

D
DFG8:

[DiscardGoods_s]

D
DFG9: on MessageSent

if body:
delivery_outcome

M1: if
ShipmentReq.M1 and
Loop.M1 and
ShipToTerminal.M1 and
(StoreInWarehouse.M1 or
StoreInWarehouse.Me) and
EExc.M1 and
DeliveryOutcome.M1

Locate missing
goods

Load goods
Ship to

terminal
Store in

warehouse

Goods damaged:
On NewSensorSample:
If Temperature > 0°C

Discard
goods

Ship to
consumer

Shipment req

Translation by Example

Non-boundary Events

54

Inventory

M1: on
MessageSent
if body:
inventory

D
DFG1: on MessageSent

if body:inventory

© Giovanni Meroni 2018

Translation by Example

Inner Sequence Block

55

Seq1

Inventory

Inventory
Shipment_req.BOM

Inventory =
Shipment_req.BOM

Delivery outcome

EExc

ShipTo

Consumer

M1:
[ShipToConsumer_t]

D
DFG1:

[ShipToConsumer_s]

Discard

Goods

M1:
[DiscardGoods_t]

D
DFG1:

[DiscardGoods_s]

M1: if
((ShipToConsumer.M1
and not
StoreInWarehouse.Me)
or (DiscardGoods.M1 and
StoreInWarehouse.Me))
and not
(Active(ShipToConsumer)
or Active(DiscardGoods))

D
DFG1:

[ShipToConsumer_s]

P
PFG1: (StoreInWarehouse.M1

or StoreInWarehouse.Me) and
not EExc.M1

D
DFG2:

[DiscardGoods_s]
P

PFG1: not StoreInWarehouse.Me
and not ShipToConsumer.M1
and not Active(DiscardGoods)

P
PFG1: StoreInWarehouse.Me and

not DiscardGoods.M1
and not Active(ShipToConsumer)

Delivery

Outcome

M1: on MessageSent
if body:delivery_outcome

D
DFG1: on MessageSent

if body:delivery_outcome

PPFG1: EExc.M1
 and not DeliveryOutcome.M1

Loop
Ite
Seq2

Load
Goods

D
DFG1:

[LoadGoods_s]
M1:
[LoadGoods_t]

Locate
Missing
GoodsP

PFG1: Seq2.M1 and
inventory!=shipment_req.BOM

 and not LocateMissingGoods.M1

M1: if Seq2.M1
and inventory=
shipment_req.BOM
and not Active(
LocateMissingGoods)

PPFG1: not Seq2.M1
M2: if Seq2.M1 and
CollectMissing
Goods.M1 and
inventory!=
shipment_req.BOM

M1: on
+Ite.M1

Shipment
Req

D
DFG1: on MessageReceived

if body:shipment_req
M1: on Message
if body:shipment_req

PPFG1: not
ShipmentReq.M1

Inventory

M1: on
MessageSent
if body:
inventory

D
DFG1: on MessageSent

if body:inventory

PPFG1: LoadGoods.M1
 and not Inventory.M1

PPFG1: not
LoadGoods.M1

D
DFG1:

[LoadGoods_s]

D

DFG2: on
MessageSent

if body:inventory

D
DFG1:

[LoadGoods_s]

D
DFG2: on

MessageSent
if body:inventory

D
DFG1:

[LocateMissingGoods_s]
M1:
[LocateMissingGoods_t]

D
DFG3: [Locate

MissingGoods_s]

M1: if
LoadGoods.M1
and Inventory.M1

D
DFG1:

[LoadGoods_s]

D
DFG2: on

MessageSent
if body:inventory

D
DFG3: [Locate

MissingGoods_s]

ShipTo
Terminal

D
DFG1:

[ShipToTerminal_s]
M1:
[ShipToTerminal_t]

PPFG1:Loop.M1 and not
ShipToTerminal.M1

StoreIn
Warehouse

D
DFG1:

[StoreInWarehouse_s]
M1:
[StoreInWarehouse_t]

FL1: on NewSensorValue
if Temperature: > 20°C

P
PFG1: ShipToTerminal.M1 and
not (StoreInWarehouse.M1 or

StoreInWarehouse.Me)

Me: on NewSensorValue
if Temperature: > 20°C

P
PFG1:

ShipmentReq.M1
and not Loop.M1

D

DFG1: on
MessageReceived

if body:shipment_req

D
DFG2:

[LoadGoods_s]

D
DFG3: on MessageSent

if body:inventory

D
DFG4:

[LocateMissingGoods_s]

D
DFG5:

[ShipToTerminal_s]

D
DFG6:

[StoreInWarehouse_s]

D
DFG7:

[ShipToConsumer_s]

D
DFG8:

[DiscardGoods_s]

D
DFG9: on MessageSent

if body:
delivery_outcome

M1: if
ShipmentReq.M1 and
Loop.M1 and
ShipToTerminal.M1 and
(StoreInWarehouse.M1 or
StoreInWarehouse.Me) and
EExc.M1 and
DeliveryOutcome.M1

Locate missing
goods

Load goods
Ship to

terminal
Store in

warehouse

Goods damaged:
On NewSensorSample:
If Temperature > 0°C

Discard
goods

Ship to
consumer

Shipment req Inventory

Seq2

Load
Goods

D
DFG1:

[LoadGoods_s]
M1:
[LoadGoods_t]

Inventory

M1: on
MessageSent
if body:
inventory

D
DFG1: on MessageSent

if body:inventory

PPFG1: LoadGoods.M1
 and not Inventory.M1

PPFG1: not
LoadGoods.M1

D
DFG1:

[LoadGoods_s]

D

DFG2: on
MessageSent

if body:inventory

M1: if
LoadGoods.M1
and Inventory.M1

© Giovanni Meroni 2018

Seq1

EExc

ShipTo

Consumer

M1:
[ShipToConsumer_t]

D
DFG1:

[ShipToConsumer_s]

Discard

Goods

M1:
[DiscardGoods_t]

D
DFG1:

[DiscardGoods_s]

M1: if
((ShipToConsumer.M1
and not
StoreInWarehouse.Me)
or (DiscardGoods.M1 and
StoreInWarehouse.Me))
and not
(Active(ShipToConsumer)
or Active(DiscardGoods))

D
DFG1:

[ShipToConsumer_s]

P
PFG1: (StoreInWarehouse.M1

or StoreInWarehouse.Me) and
not EExc.M1

D
DFG2:

[DiscardGoods_s]
P

PFG1: not StoreInWarehouse.Me
and not ShipToConsumer.M1
and not Active(DiscardGoods)

P
PFG1: StoreInWarehouse.Me and

not DiscardGoods.M1
and not Active(ShipToConsumer)

Delivery

Outcome

M1: on MessageSent
if body:delivery_outcome

D
DFG1: on MessageSent

if body:delivery_outcome

PPFG1: EExc.M1
 and not DeliveryOutcome.M1

Loop
Ite
Seq2

Load
Goods

D
DFG1:

[LoadGoods_s]
M1:
[LoadGoods_t]

Locate
Missing
GoodsP

PFG1: Seq2.M1 and
inventory!=shipment_req.BOM

 and not LocateMissingGoods.M1

M1: if Seq2.M1
and inventory=
shipment_req.BOM
and not Active(
LocateMissingGoods)

PPFG1: not Seq2.M1
M2: if Seq2.M1 and
CollectMissing
Goods.M1 and
inventory!=
shipment_req.BOM

M1: on
+Ite.M1

Shipment
Req

D
DFG1: on MessageReceived

if body:shipment_req
M1: on Message
if body:shipment_req

PPFG1: not
ShipmentReq.M1

Inventory

M1: on
MessageSent
if body:
inventory

D
DFG1: on MessageSent

if body:inventory

PPFG1: LoadGoods.M1
 and not Inventory.M1

PPFG1: not
LoadGoods.M1

D
DFG1:

[LoadGoods_s]

D

DFG2: on
MessageSent

if body:inventory

D
DFG1:

[LoadGoods_s]

D
DFG2: on

MessageSent
if body:inventory

D
DFG1:

[LocateMissingGoods_s]
M1:
[LocateMissingGoods_t]

D
DFG3: [Locate

MissingGoods_s]

M1: if
LoadGoods.M1
and Inventory.M1

D
DFG1:

[LoadGoods_s]

D
DFG2: on

MessageSent
if body:inventory

D
DFG3: [Locate

MissingGoods_s]

ShipTo
Terminal

D
DFG1:

[ShipToTerminal_s]
M1:
[ShipToTerminal_t]

PPFG1:Loop.M1 and not
ShipToTerminal.M1

StoreIn
Warehouse

D
DFG1:

[StoreInWarehouse_s]
M1:
[StoreInWarehouse_t]

FL1: on NewSensorValue
if Temperature: > 20°C

P
PFG1: ShipToTerminal.M1 and
not (StoreInWarehouse.M1 or

StoreInWarehouse.Me)

Me: on NewSensorValue
if Temperature: > 20°C

P
PFG1:

ShipmentReq.M1
and not Loop.M1

D

DFG1: on
MessageReceived

if body:shipment_req

D
DFG2:

[LoadGoods_s]

D
DFG3: on MessageSent

if body:inventory

D
DFG4:

[LocateMissingGoods_s]

D
DFG5:

[ShipToTerminal_s]

D
DFG6:

[StoreInWarehouse_s]

D
DFG7:

[ShipToConsumer_s]

D
DFG8:

[DiscardGoods_s]

D
DFG9: on MessageSent

if body:
delivery_outcome

M1: if
ShipmentReq.M1 and
Loop.M1 and
ShipToTerminal.M1 and
(StoreInWarehouse.M1 or
StoreInWarehouse.Me) and
EExc.M1 and
DeliveryOutcome.M1

Inventory

Inventory
Shipment_req.BOM

Inventory =
Shipment_req.BOM

Delivery outcome

Locate missing
goods

Load goods
Ship to

terminal
Store in

warehouse

Goods damaged:
On NewSensorSample:
If Temperature > 0°C

Discard
goods

Ship to
consumer

Shipment req Inventory

Translation by Example

Loop Block

56

Loop
Ite
Seq2

Load
Goods

D
DFG1:

[LoadGoods_s]
M1:
[LoadGoods_t]

Locate
Missing
GoodsP

PFG1: Seq2.M1 and
inventory!=shipment_req.BOM

 and not LocateMissingGoods.M1

M1: if Seq2.M1
and inventory=
shipment_req.BOM
and not Active(
LocateMissingGoods)

PPFG1: not Seq2.M1
M2: if Seq2.M1 and
CollectMissing
Goods.M1 and
inventory!=
shipment_req.BOM

M1: on
+Ite.M1

Inventory

M1: on
MessageSent
if body:
inventory

D
DFG1: on MessageSent

if body:inventory

PPFG1: LoadGoods.M1
 and not Inventory.M1

PPFG1: not
LoadGoods.M1

D
DFG1:

[LoadGoods_s]

D

DFG2: on
MessageSent

if body:inventory

D
DFG1:

[LoadGoods_s]

D
DFG2: on

MessageSent
if body:inventory

D
DFG1:

[LocateMissingGoods_s]
M1:
[LocateMissingGoods_t]

D
DFG3: [Locate

MissingGoods_s]

M1: if
LoadGoods.M1
and Inventory.M1

D
DFG1:

[LoadGoods_s]

D
DFG2: on

MessageSent
if body:inventory

D
DFG3: [Locate

MissingGoods_s]

P
PFG1:

ShipmentReq.M1
and not Loop.M1

© Giovanni Meroni 2018

Inventory

Inventory
Shipment_req.BOM

Inventory =
Shipment_req.BOM

Delivery outcome

Locate missing
goods

Load goods
Ship to

terminal
Store in

warehouse

Goods damaged:
On NewSensorSample:
If Temperature > 0°C

Discard
goods

Ship to
consumer

Shipment req

Seq1

EExc

ShipTo

Consumer

M1:
[ShipToConsumer_t]

D
DFG1:

[ShipToConsumer_s]

Discard

Goods

M1:
[DiscardGoods_t]

D
DFG1:

[DiscardGoods_s]

M1: if
((ShipToConsumer.M1
and not
StoreInWarehouse.Me)
or (DiscardGoods.M1 and
StoreInWarehouse.Me))
and not
(Active(ShipToConsumer)
or Active(DiscardGoods))

D
DFG1:

[ShipToConsumer_s]

P
PFG1: (StoreInWarehouse.M1

or StoreInWarehouse.Me) and
not EExc.M1

D
DFG2:

[DiscardGoods_s]
P

PFG1: not StoreInWarehouse.Me
and not ShipToConsumer.M1
and not Active(DiscardGoods)

P
PFG1: StoreInWarehouse.Me and

not DiscardGoods.M1
and not Active(ShipToConsumer)

Delivery

Outcome

M1: on MessageSent
if body:delivery_outcome

D
DFG1: on MessageSent

if body:delivery_outcome

PPFG1: EExc.M1
 and not DeliveryOutcome.M1

Loop
Ite
Seq2

Load
Goods

D
DFG1:

[LoadGoods_s]
M1:
[LoadGoods_t]

Locate
Missing
GoodsP

PFG1: Seq2.M1 and
inventory!=shipment_req.BOM

 and not LocateMissingGoods.M1

M1: if Seq2.M1
and inventory=
shipment_req.BOM
and not Active(
LocateMissingGoods)

PPFG1: not Seq2.M1
M2: if Seq2.M1 and
CollectMissing
Goods.M1 and
inventory!=
shipment_req.BOM

M1: on
+Ite.M1

Shipment
Req

D
DFG1: on MessageReceived

if body:shipment_req
M1: on Message
if body:shipment_req

PPFG1: not
ShipmentReq.M1

Inventory

M1: on
MessageSent
if body:
inventory

D
DFG1: on MessageSent

if body:inventory

PPFG1: LoadGoods.M1
 and not Inventory.M1

PPFG1: not
LoadGoods.M1

D
DFG1:

[LoadGoods_s]

D

DFG2: on
MessageSent

if body:inventory

D
DFG1:

[LoadGoods_s]

D
DFG2: on

MessageSent
if body:inventory

D
DFG1:

[LocateMissingGoods_s]
M1:
[LocateMissingGoods_t]

D
DFG3: [Locate

MissingGoods_s]

M1: if
LoadGoods.M1
and Inventory.M1

D
DFG1:

[LoadGoods_s]

D
DFG2: on

MessageSent
if body:inventory

D
DFG3: [Locate

MissingGoods_s]

ShipTo
Terminal

D
DFG1:

[ShipToTerminal_s]
M1:
[ShipToTerminal_t]

PPFG1:Loop.M1 and not
ShipToTerminal.M1

StoreIn
Warehouse

D
DFG1:

[StoreInWarehouse_s]
M1:
[StoreInWarehouse_t]

FL1: on NewSensorValue
if Temperature: > 20°C

P
PFG1: ShipToTerminal.M1 and
not (StoreInWarehouse.M1 or

StoreInWarehouse.Me)

Me: on NewSensorValue
if Temperature: > 20°C

P
PFG1:

ShipmentReq.M1
and not Loop.M1

D

DFG1: on
MessageReceived

if body:shipment_req

D
DFG2:

[LoadGoods_s]

D
DFG3: on MessageSent

if body:inventory

D
DFG4:

[LocateMissingGoods_s]

D
DFG5:

[ShipToTerminal_s]

D
DFG6:

[StoreInWarehouse_s]

D
DFG7:

[ShipToConsumer_s]

D
DFG8:

[DiscardGoods_s]

D
DFG9: on MessageSent

if body:
delivery_outcome

M1: if
ShipmentReq.M1 and
Loop.M1 and
ShipToTerminal.M1 and
(StoreInWarehouse.M1 or
StoreInWarehouse.Me) and
EExc.M1 and
DeliveryOutcome.M1

Goods damaged:
On NewSensorSample:
If Temperature > 0°C

Translation by Example

Forward Exception Handling Block

57

EExc

ShipTo

Consumer

M1:
[ShipToConsumer_t]

D
DFG1:

[ShipToConsumer_s]

Discard

Goods

M1:
[DiscardGoods_t]

D
DFG1:

[DiscardGoods_s]

M1: if
((ShipToConsumer.M1
and not
StoreInWarehouse.Me)
or (DiscardGoods.M1 and
StoreInWarehouse.Me))
and not
(Active(ShipToConsumer)
or Active(DiscardGoods))

D
DFG1:

[ShipToConsumer_s]

P
PFG1: (StoreInWarehouse.M1

or StoreInWarehouse.Me) and
not EExc.M1

D
DFG2:

[DiscardGoods_s]
P

PFG1: not StoreInWarehouse.Me
and not ShipToConsumer.M1
and not Active(DiscardGoods)

P
PFG1: StoreInWarehouse.Me and

not DiscardGoods.M1
and not Active(ShipToConsumer)

© Giovanni Meroni 2018

Translation by Example

Outer Sequence Block

58

Inventory

Inventory
Shipment_req.BOM

Inventory =
Shipment_req.BOM

Delivery outcome

Locate missing
goods

Load goods
Ship to

terminal
Store in

warehouse

Goods damaged:
On NewSensorSample:
If Temperature > 0°C

Discard
goods

Ship to
consumer

Shipment req Inventory

Inventory
Shipment_req.BOM

Locate missing
goods

Load goods

Inventory

Ship to
terminal

Inventory Delivery outcomeShipment req

Seq1

EExc

ShipTo

Consumer

M1:
[ShipToConsumer_t]

D
DFG1:

[ShipToConsumer_s]

Discard

Goods

M1:
[DiscardGoods_t]

D
DFG1:

[DiscardGoods_s]

M1: if
((ShipToConsumer.M1
and not
StoreInWarehouse.Me)
or (DiscardGoods.M1 and
StoreInWarehouse.Me))
and not
(Active(ShipToConsumer)
or Active(DiscardGoods))

D
DFG1:

[ShipToConsumer_s]

P
PFG1: (StoreInWarehouse.M1

or StoreInWarehouse.Me) and
not EExc.M1

D
DFG2:

[DiscardGoods_s]
P

PFG1: not StoreInWarehouse.Me
and not ShipToConsumer.M1
and not Active(DiscardGoods)

P
PFG1: StoreInWarehouse.Me and

not DiscardGoods.M1
and not Active(ShipToConsumer)

Delivery

Outcome

M1: on MessageSent
if body:delivery_outcome

D
DFG1: on MessageSent

if body:delivery_outcome

PPFG1: EExc.M1
 and not DeliveryOutcome.M1

Loop
Ite
Seq2

Load
Goods

D
DFG1:

[LoadGoods_s]
M1:
[LoadGoods_t]

Locate
Missing
GoodsP

PFG1: Seq2.M1 and
inventory!=shipment_req.BOM

 and not LocateMissingGoods.M1

M1: if Seq2.M1
and inventory=
shipment_req.BOM
and not Active(
LocateMissingGoods)

PPFG1: not Seq2.M1
M2: if Seq2.M1 and
CollectMissing
Goods.M1 and
inventory!=
shipment_req.BOM

M1: on
+Ite.M1

Shipment
Req

D
DFG1: on MessageReceived

if body:shipment_req
M1: on Message
if body:shipment_req

PPFG1: not
ShipmentReq.M1

Inventory

M1: on
MessageSent
if body:
inventory

D
DFG1: on MessageSent

if body:inventory

PPFG1: LoadGoods.M1
 and not Inventory.M1

PPFG1: not
LoadGoods.M1

D
DFG1:

[LoadGoods_s]

D

DFG2: on
MessageSent

if body:inventory

D
DFG1:

[LoadGoods_s]

D
DFG2: on

MessageSent
if body:inventory

D
DFG1:

[LocateMissingGoods_s]
M1:
[LocateMissingGoods_t]

D
DFG3: [Locate

MissingGoods_s]

M1: if
LoadGoods.M1
and Inventory.M1

D
DFG1:

[LoadGoods_s]

D
DFG2: on

MessageSent
if body:inventory

D
DFG3: [Locate

MissingGoods_s]

ShipTo
Terminal

D
DFG1:

[ShipToTerminal_s]
M1:
[ShipToTerminal_t]

PPFG1:Loop.M1 and not
ShipToTerminal.M1

StoreIn
Warehouse

D
DFG1:

[StoreInWarehouse_s]
M1:
[StoreInWarehouse_t]

FL1: on NewSensorValue
if Temperature: > 20°C

P
PFG1: ShipToTerminal.M1 and
not (StoreInWarehouse.M1 or

StoreInWarehouse.Me)

Me: on NewSensorValue
if Temperature: > 20°C

P
PFG1:

ShipmentReq.M1
and not Loop.M1

D

DFG1: on
MessageReceived

if body:shipment_req

D
DFG2:

[LoadGoods_s]

D
DFG3: on MessageSent

if body:inventory

D
DFG4:

[LocateMissingGoods_s]

D
DFG5:

[ShipToTerminal_s]

D
DFG6:

[StoreInWarehouse_s]

D
DFG7:

[ShipToConsumer_s]

D
DFG8:

[DiscardGoods_s]

D
DFG9: on MessageSent

if body:
delivery_outcome

M1: if
ShipmentReq.M1 and
Loop.M1 and
ShipToTerminal.M1 and
(StoreInWarehouse.M1 or
StoreInWarehouse.Me) and
EExc.M1 and
DeliveryOutcome.M1

© Giovanni Meroni 2018

Monitorability of a process
59

•Not all smart objects are suited to monitor a process

•The monitorability of a process indicates how many activities in
a process can be monitored by smart objects

•The capabilities of the Smart Objects affect monitorability

• The execution of activities is determined by the state of the smart
objects

• The state of a smart object is inferred from its physical properties

• The physical properties of a smart object are measured by
sensors

•We propose an ontology-based approach to:

• Formalize the capabilities of smart objects

• Estimate the monitorability

• Provide suggestions to improve the monitorability

© Giovanni Meroni 2018

Smart object ontology

•Ontology derived from FIESTA-IoT that captures the capabilities

of the smart object

60

Artifact

Truck

Smart
Object

Plate
AB123XY

realizesArtifact

realizesArtifact

© Giovanni Meroni 2018

Artifact

Truck

Smart
Object

Plate
AB123XY

Sensing
Device

GPS
Receiver

Speedometer

realizesArtifact onPlatform

realizesArtifact

onPlatform

onPlatform

Smart object ontology

•Ontology derived from FIESTA-IoT that captures the capabilities

of the smart object

61

© Giovanni Meroni 2018

Artifact

Truck

Smart
Object

Plate
AB123XY

Sensing
Device

GPS
Receiver

Speedometer

Quantity
Kind

Position

Speed
Instantaneous

realizesArtifact onPlatform

hasQuantityKind

realizesArtifact

onPlatform hasQuantityKind

hasQuantityKind

onPlatform

Smart object ontology

•Ontology derived from FIESTA-IoT that captures the capabilities

of the smart object

62

© Giovanni Meroni 2018

Artifact

Truck

Smart
Object

Plate
AB123XY

Sensing
Device

GPS
Receiver

Speedometer

Unit

Quantity
Kind

Position

Speed
Instantaneous

Coordinates
DD

KilometerHour

realizesArtifact onPlatform
hasUnit

hasQuantityKind

realizesArtifact

onPlatform hasQuantityKind

hasUnit

hasUnit

hasQuantityKind

onPlatform

Smart object ontology

•Ontology derived from FIESTA-IoT that captures the capabilities

of the smart object

63

© Giovanni Meroni 2018

State detection rules ontology

•Ontology derived from Physics Domain ontology (Hachem et al.

– MDS 2011) that formalizes how sensor data is used to infer a

state

64

Artifact

Truck

State

Still

Moving

assumesState

assumesState

assumesState

© Giovanni Meroni 2018

State detection rules ontology

•Ontology derived from Physics Domain ontology (Hachem et al.

– MDS 2011) that formalizes how sensor data is used to infer a

state

65

Artifact

Truck

State

Still

Detection
Rule

speed2state

Moving

assumesState

assumesState

assumesState

producesState

producesState

producesState

© Giovanni Meroni 2018

State detection rules ontology

•Ontology derived from Physics Domain ontology (Hachem et al.

– MDS 2011) that formalizes how sensor data is used to infer a

state

66

Artifact

Truck

State

Still

Detection
Rule

speed2state

Parameter

Moving

speedinst
kmh

assumesState

assumesState

assumesState

producesState

producesState

usesParameter

usesParameter
producesState

© Giovanni Meroni 2018

State detection rules ontology

•Ontology derived from Physics Domain ontology (Hachem et al.

– MDS 2011) that formalizes how sensor data is used to infer a

state

67

Artifact

Truck

State

Still

Detection
Rule

speed2state

Parameter

Moving

speedinst
kmh

Unit

Quantity
Kind

Speed
Instantaneous

KilometerHour

expressedInUnit

hasConcept

expressedInUnit

hasConcept

assumesState

assumesState

assumesState

producesState

producesState

usesParameter

usesParameter
producesState

© Giovanni Meroni 2018

Artifact

Truck

State

Still

Detection
Rule

speed2state

Parameter

Moving

speedinst
kmh

Unit

Quantity
Kind

Speed
Instantaneous

KilometerHour

expressedInUnit

hasConcept

expressedInUnit

hasConcept

Formula
HasInput

hasOutput

posdd

coords2speed

assumesState

assumesState

assumesState

producesState

producesState

usesParameter

usesParameter

hasInput

hasOutput

producesState

Position

Coordinates
DD

hasConcept

expressedInUnit

State detection rules ontology

•Ontology derived from Physics Domain ontology (Hachem et al.

– MDS 2011) that formalizes how sensor data is used to infer a

state

68

© Giovanni Meroni 2018

Process monitorability assessment

•For each couple <artifact, state> in the process model, we

need to determine how many smart objects can infer

that state based on their capabilities

•To do so, for each smart object that embodies artifact,

the ontologies are queried to determine:

• If a detection rule to infer state exists

• Which parameters are required by that rule

• If the sensors on the smart object provide the required

parameters

•Then, the monitorability of <artifact, state> is computed

as:

69

© Giovanni Meroni 2018

Process monitorability assessment

•Determine if truck AB123XY can infer <truck, still>:

• If a detection rule to infer still exists

• Which parameters are required by that rule

• If the sensors on AB123XY provide the required

parameters

70

Artifact

Truck

State

Still

Detection
Rule

speed2state

Parameter

Moving

speedinst
kmh

Unit

Quantity
Kind

Speed
Instantaneous

KilometerHour

expressedInUnit

hasConcept

expressedInUnit

hasConcept

Formula
HasInput

hasOutput

posdd

coords2speed

assumesState

assumesState

assumesState

producesState

producesState

usesParameter

usesParameter

hasInput

hasOutput

producesState

Position

Coordinates
DD

hasConcept

expressedInUnit

© Giovanni Meroni 2018

Process monitorability assessment

•Determine if truck AB123XY can infer <truck, still>:

• If a detection rule to infer still exists

• Which parameters are required by that rule

• If the sensors on AB123XY provide the required

parameters

71

Artifact

Truck

State

Still

Detection
Rule

speed2state

Parameter

Moving

speedinst
kmh

Unit

Quantity
Kind

Speed
Instantaneous

KilometerHour

expressedInUnit

hasConcept

expressedInUnit

hasConcept

Formula
HasInput

hasOutput

posdd

coords2speed

assumesState

assumesState

assumesState

producesState

producesState

usesParameter

usesParameter

hasInput

hasOutput

producesState

Position

Coordinates
DD

hasConcept

expressedInUnit

© Giovanni Meroni 2018

Artifact

Truck

Smart
Object

Plate
AB123XY

Sensing
Device

GPS
Receiver

Speedometer

Unit

Quantity
Kind

Position

Speed
Instantaneous

Coordinates
DD

KilometerHour

realizesArtifact onPlatform
hasUnit

hasQuantityKind

realizesArtifact

onPlatform hasQuantityKind

hasUnit

hasUnit

hasQuantityKind

onPlatform

Process monitorability assessment

•Determine if truck AB123XY can infer <truck, still>:

• If a detection rule to infer still exists

• Which parameters are required by that rule

• If the sensors on AB123XY provide the required

parameters

72

© Giovanni Meroni 2018

Process monitorability assessment

•Once has been determined for every couple
<artifact, state>, the monitorability of the activation and the
termination of an activity is determined as:

•Then, the monitorability of an activity is:

•Finally, the monitorability of the process is:

73

© Giovanni Meroni 2018

Process monitorability improvement

•To improve monitorability, three types of actions are
possible:

• Alter the process model to rely on different artifacts or
states to determine when activities are executed

• Improve the state detection rules

• Modify the smart objects introducing new sensors

•When altering the process model, for each couple
<artifact, state> that cannot be monitored, the ontologies
can suggest:

• Another state state’ for artifact such that:

• Another artifact artifact such that

74

© Giovanni Meroni 2018

Process monitorability improvement

•To improve the state detection rules, the ontologies can detect
smart objects that:

• Cannot detect a state just because their sensors use a data
format different from the one required by the detection rule

• Cannot detect a state, but provide sensor data that can be used
to indirectly derive that state

•By introducing a new detection rule similar to the existing one
except for the input parameters, these smart objects can detect
that state.

• This positively affects the monitorability of the process

•For smart objects that cannot provide sensor data to detect that
state, either directly or indirectly, the ontologies can suggest
which sensors should be introduced

75

© Giovanni Meroni 2018

Artifact

Truck

Smart
Object

Plate
AB123XY

Sensing
Device

GPS
Receiver

Speedometer

Unit

Quantity
Kind

Position

Speed
Instantaneous

Coordinates
DD

MilesHour

realizesArtifact onPlatform
hasUnit

hasQuantityKind

realizesArtifact

onPlatform hasQuantityKind

hasUnit

hasUnit

hasQuantityKind

onPlatform

Process monitorability improvement

•Truck CD456WX provides the speed in miles per hour

76

© Giovanni Meroni 2018

Process monitorability improvement

•Truck CD456WX provides the speed in miles per hour

•To detect <truck, still>, rule speed2state requires the speed to be

expressed in kilometers per hour

•Truck CD456WX cannot use speed2state, so it cannot detect

<truck, still>

77

Artifact

Truck

State

Still

Detection
Rule

speed2state

Parameter

Moving

speedinst
kmh

Unit

Quantity
Kind

Speed
Instantaneous

KilometerHour

expressedInUnit

hasConcept

expressedInUnit

hasConcept

Formula

HasInput

hasOutput

posdd

coords2speed

assumesState

assumesState

assumesState

producesState

producesState

usesParameter

usesParameter

hasInput

hasOutput

producesState

Position

Coordinates
DD

hasConcept

expressedInUnit

© Giovanni Meroni 2018

Process monitorability improvement

•Truck CD456WX provides the speed in miles per hour

•To detect <truck, still>, rule speed2state requires the speed to be

expressed in kilometers per hour

•Truck CD456WX cannot use speed2state, so it cannot detect

<truck, still>

•A new rule speed2state’ can be derived from speed2state by

converting the speed from miles per hour to kilometers per hour

•With speed2state’, Truck CD456WX can now detect <truck, still>

78

© Giovanni Meroni 2018

Artifact

Truck

Smart
Object

Plate
EF789UV

Sensing
Device

GPS
Receiver

Unit

Quantity
Kind

Position

Coordinates
DD

realizesArtifact onPlatform
hasUnit

hasQuantityKind

realizesArtifact

hasUnit

hasQuantityKind

onPlatform

Process monitorability improvement

•Truck EF789UV provides its own position in decimal degrees

coordinates

79

© Giovanni Meroni 2018

Process monitorability improvement

•Truck EF789UV provides its own position in decimal degrees

coordinates

•To detect <truck, still>, rule speed2state requires the speed

•Truck EF789UV cannot use speed2state, so it cannot detect

<truck, still>

80

Artifact

Truck

State

Still

Detection
Rule

speed2state

Parameter

Moving

speedinst
kmh

Unit

Quantity
Kind

Speed
Instantaneous

KilometerHour

expressedInUnit

hasConcept

expressedInUnit

hasConcept

Formula
HasInput

hasOutput

posdd

coords2speed

assumesState

assumesState

assumesState

producesState

producesState

usesParameter

usesParameter

hasInput

hasOutput

producesState

Position

Coordinates
DD

hasConcept

expressedInUnit

© Giovanni Meroni 2018

Process monitorability improvement

•Truck EF789UV provides its own position in decimal degrees

coordinates

•To detect <truck, still>, rule speed2state requires the speed

•Truck EF789UV cannot use speed2state, so it cannot detect

<truck, still>

•However, speed can be derived from the position by using

formula coords2speed

81

Artifact

Truck

State

Still

Detection
Rule

speed2state

Parameter

Moving

speedinst
kmh

Unit

Quantity
Kind

Speed
Instantaneous

KilometerHour

expressedInUnit

hasConcept

expressedInUnit

hasConcept

Formula
HasInput

hasOutput

posdd

coords2speed

assumesState

assumesState

assumesState

producesState

producesState

usesParameter

usesParameter

hasInput

hasOutput

producesState

Position

Coordinates
DD

hasConcept

expressedInUnit

© Giovanni Meroni 2018

Process monitorability improvement

•Truck EF789UV provides its own position in decimal degrees

coordinates

•To detect <truck, still>, rule speed2state requires the speed

•Truck EF789UV cannot use speed2state, so it cannot detect

<truck, still>

•However, speed can be derived from the position by using

formula coords2speed

•A new rule coords2state can be derived by combining

speed2state with coords2speed

•With coords2state, Truck CD456WX can now detect <truck, still>

82

