
USING THE GUARD-STAGE-MILESTONE

NOTATION FOR MONITORING

BPMN-BASED PROCESSES

BPMDS 2016

Ljubljana – 13th – 14th June 2016

Luciano Baresi, Giovanni Meroni and Pierluigi Plebani

© 2016 Luciano Baresi, Giovanni Meroni and Pierluigi Plebani

Agenda

• Introduction and problem statement

• Goal of this work

• E-GSM

• From BPMN to E-GSM

• Validation

• Conclusion

2

© 2016 Luciano Baresi, Giovanni Meroni and Pierluigi Plebani

Introduction and problem statement

• Using control flow languages to monitor the process

execution has the following shortcomings:

• If activities do not respect their execution order, an exception is

raised and the rest of the process cannot be monitored

• It is desirable to continue monitoring and assess to which extent the

whole process violates the model

• They rely on explicit start and termination messages to understand

which activities are running

• When the process is not automated, such messages are unavailable

• Processes that are outside the organization that performs

monitoring cannot be forced to follow the model.

• In principle, activities could be actually executed in arbitrary order,

regardless on the model

3

© 2016 Luciano Baresi, Giovanni Meroni and Pierluigi Plebani

B executed

Process

ended

A executed

A B

A B

A B

Waiting

for A

Waiting

for B

Motivating example

© 2016 Luciano Baresi, Giovanni Meroni and Pierluigi Plebani

Error! B

executed

Error! B

executed

A B

A B

A B

Waiting

for A

Waiting

for … ?

Motivating example

© 2016 Luciano Baresi, Giovanni Meroni and Pierluigi Plebani

Error! B executed

before A

Error! A executed

Process ended

Error! B

executed before

A

A B

A B

A B

Waiting for

something

to happen

Waiting for

something

to happen

Motivating example

© 2016 Luciano Baresi, Giovanni Meroni and Pierluigi Plebani

Goal of this work

• The adoption of artifact-centric languages (e.g., GSM) can

overcome these limitations

• Declarative languages allow more degrees of freedom

• Declarative languages can be used to passively monitor

the execution of processes

7

© 2016 Luciano Baresi, Giovanni Meroni and Pierluigi Plebani

Goal of this work

Propose an approach for configuring process monitor by

using a declarative model directly derived from a process

model that will be executed, which is defined with traditional

control-flow languages.

8

Delivery_notification

DayOfWeek=Sun

not DayOfWeek=Sun

LoadGoods ShipToA

ShipToB

ShipToC

Start_shipping

DeliverTo
Customer

BPMN

Process
Engine

Operators

Process designers

Severity
classification

© 2016 Luciano Baresi, Giovanni Meroni and Pierluigi Plebani

Goal of this work

Propose an approach for configuring process monitor by

using a declarative model directly derived from a process

model that will be executed, which is defined with traditional

control-flow languages.

9

Seq

Exc

LoadGoods

DDFG1: [LoadGoods_s]
M1: [LoadGoods_t]

ShipToA
M1: [ShipToA_t]DDFG1: [ShipToA_s]

ShipToB

M1: [ShipToB_t]DDFG1: [ShipToB_s]

FL1: on NewSensorValue
if Acceleration: > 5m2/s

if StartShipping.M1 and
ELoop.M1 and ShipToA.M1
and
Exc.M1 and
DeliverToCustomer.M1 and
DeliveryNotification.M1

DeliverTo

Customer

M1: [DeliverToCustomer_t]DDFG1: [DeliverToCustomer_s]

Start
Shipping

D
DFG1: on MessageReceived

if body:start_shipping
M1: on Message
if body:start_shipping

ShipToC

M1: [ShipToC_t]D
DFG1: [ShipToC_s]

M1: if ((ShipToB.M1 and
DayOfWeek=Sun) or
(ShipToC.M1 and not
DayOfWeek=Sun)) and not
(Active(ShipToB) or
Active(ShipToC))

DDFG1: [ShipToB_s]

Delivery

Notification

M1: on MessageSent
if body:delivery_notif ication

D
DFG1: on MessageSent

if body:delivery_notif ication

P
PFG1: (LoadGoods.M1 or

LoadGoods.Me) and not
ShipToA.M1

P
PFG1: ShipToA.M1 and

not Exc.M1

DDFG2: [ShipToC_s]

P
PFG1: Exc.M1 and not

DeliverToCustomer.M1

PPFG1: DeliverToCustomer.M1
 and not DeliveryNotification.M1

D
DFG1: on

MessageReceived
if body:start_shipping

DDFG2: [LoadGoods_s]

DDFG3: [ShipToA_s]

DDFG4: [ShipToB_s]

DDFG5: [ShipToC_s]

D
DFG6:

[DeliverToCustomer_s]

DDFG7: on MessageSent if
body:delivery_notif ication P

PFG1: DayOfWeek=Sun
and not ShipToB.M1

and not Active(ShipToC)

P
PFG1: not DayOfWeek=Sun

and not ShipToC.M1
and not Active(ShipToB)

PPFG1: not
StartShipping.M1

P
PFG1: StartShipping.M1 and

not (LoadGoods.M1 or
LoadGoods.Me)

Me: on NewSensorValue
if Acceleration: > 5m2/s

Delivery_notification

DayOfWeek=Sun

not DayOfWeek=Sun

LoadGoods ShipToA

ShipToB

ShipToC

Start_shipping

DeliverTo
Customer

BPMN

E-GSM

Process
Engine

Operators

Process designers

Severity
classification

© 2016 Luciano Baresi, Giovanni Meroni and Pierluigi Plebani

Goal of this work

Propose an approach for configuring process monitor by

using a declarative model directly derived from a process

model that will be executed, which is defined with traditional

control-flow languages.

10

Seq

Exc

LoadGoods

DDFG1: [LoadGoods_s]
M1: [LoadGoods_t]

ShipToA
M1: [ShipToA_t]DDFG1: [ShipToA_s]

ShipToB

M1: [ShipToB_t]DDFG1: [ShipToB_s]

FL1: on NewSensorValue
if Acceleration: > 5m2/s

if StartShipping.M1 and
ELoop.M1 and ShipToA.M1
and
Exc.M1 and
DeliverToCustomer.M1 and
DeliveryNotification.M1

DeliverTo

Customer

M1: [DeliverToCustomer_t]DDFG1: [DeliverToCustomer_s]

Start
Shipping

D
DFG1: on MessageReceived

if body:start_shipping
M1: on Message
if body:start_shipping

ShipToC

M1: [ShipToC_t]D
DFG1: [ShipToC_s]

M1: if ((ShipToB.M1 and
DayOfWeek=Sun) or
(ShipToC.M1 and not
DayOfWeek=Sun)) and not
(Active(ShipToB) or
Active(ShipToC))

DDFG1: [ShipToB_s]

Delivery

Notification

M1: on MessageSent
if body:delivery_notif ication

D
DFG1: on MessageSent

if body:delivery_notif ication

P
PFG1: (LoadGoods.M1 or

LoadGoods.Me) and not
ShipToA.M1

P
PFG1: ShipToA.M1 and

not Exc.M1

DDFG2: [ShipToC_s]

P
PFG1: Exc.M1 and not

DeliverToCustomer.M1

PPFG1: DeliverToCustomer.M1
 and not DeliveryNotification.M1

D
DFG1: on

MessageReceived
if body:start_shipping

DDFG2: [LoadGoods_s]

DDFG3: [ShipToA_s]

DDFG4: [ShipToB_s]

DDFG5: [ShipToC_s]

D
DFG6:

[DeliverToCustomer_s]

DDFG7: on MessageSent if
body:delivery_notif ication P

PFG1: DayOfWeek=Sun
and not ShipToB.M1

and not Active(ShipToC)

P
PFG1: not DayOfWeek=Sun

and not ShipToC.M1
and not Active(ShipToB)

PPFG1: not
StartShipping.M1

P
PFG1: StartShipping.M1 and

not (LoadGoods.M1 or
LoadGoods.Me)

Me: on NewSensorValue
if Acceleration: > 5m2/s

Delivery_notification

DayOfWeek=Sun

not DayOfWeek=Sun

LoadGoods ShipToA

ShipToB

ShipToC

Start_shipping

DeliverTo
Customer

BPMN

E-GSM

Process
Engine

Process
Monitor

Operators

Process designers

Severity
classification

© 2016 Luciano Baresi, Giovanni Meroni and Pierluigi Plebani

Goal of this work

Propose an approach for configuring process monitor by

using a declarative model directly derived from a process

model that will be executed, which is defined with traditional

control-flow languages.

11

Seq

Exc

LoadGoods

DDFG1: [LoadGoods_s]
M1: [LoadGoods_t]

ShipToA
M1: [ShipToA_t]DDFG1: [ShipToA_s]

ShipToB

M1: [ShipToB_t]DDFG1: [ShipToB_s]

FL1: on NewSensorValue
if Acceleration: > 5m2/s

if StartShipping.M1 and
ELoop.M1 and ShipToA.M1
and
Exc.M1 and
DeliverToCustomer.M1 and
DeliveryNotification.M1

DeliverTo

Customer

M1: [DeliverToCustomer_t]DDFG1: [DeliverToCustomer_s]

Start
Shipping

D
DFG1: on MessageReceived

if body:start_shipping
M1: on Message
if body:start_shipping

ShipToC

M1: [ShipToC_t]D
DFG1: [ShipToC_s]

M1: if ((ShipToB.M1 and
DayOfWeek=Sun) or
(ShipToC.M1 and not
DayOfWeek=Sun)) and not
(Active(ShipToB) or
Active(ShipToC))

DDFG1: [ShipToB_s]

Delivery

Notification

M1: on MessageSent
if body:delivery_notif ication

D
DFG1: on MessageSent

if body:delivery_notif ication

P
PFG1: (LoadGoods.M1 or

LoadGoods.Me) and not
ShipToA.M1

P
PFG1: ShipToA.M1 and

not Exc.M1

DDFG2: [ShipToC_s]

P
PFG1: Exc.M1 and not

DeliverToCustomer.M1

PPFG1: DeliverToCustomer.M1
 and not DeliveryNotification.M1

D
DFG1: on

MessageReceived
if body:start_shipping

DDFG2: [LoadGoods_s]

DDFG3: [ShipToA_s]

DDFG4: [ShipToB_s]

DDFG5: [ShipToC_s]

D
DFG6:

[DeliverToCustomer_s]

DDFG7: on MessageSent if
body:delivery_notif ication

P
PFG1: DayOfWeek=Sun

and not ShipToB.M1
and not Active(ShipToC)

P
PFG1: not DayOfWeek=Sun

and not ShipToC.M1
and not Active(ShipToB)

PPFG1: not
StartShipping.M1

P
PFG1: StartShipping.M1 and

not (LoadGoods.M1 or
LoadGoods.Me)

Me: on NewSensorValue
if Acceleration: > 5m2/s

Delivery_notification

DayOfWeek=Sun

not DayOfWeek=Sun

LoadGoods ShipToA

ShipToB

ShipToC

Start_shipping

DeliverTo
Customer

BPMN

E-GSM

Process
Engine

Process
Monitor

Operators

ManagersProcess designers

Severity
classification

© 2016 Luciano Baresi, Giovanni Meroni and Pierluigi Plebani

Guard-Stage-Milestone (GSM) Notation

• The Guard-Stage-Milestone (GSM) notation [1] is the ideal

candidate for capturing the execution of processes:

• Guard (G) determines the start of each task based on events

• Milestone (M) determines the end of each task based on events

• Events can be internal or external, involving conditions on sensor

data, explicit messages, etc.

12

[1] Hull et al.: Introducing the guard-stage-milestone approach for specifying business entity

lifecycles.

Stage

Guard Milestone

© 2016 Luciano Baresi, Giovanni Meroni and Pierluigi Plebani

E-GSM

• E-GSM, our extension of GSM developed in a previous

work [2], introduces the following changes:

• Guard distinguished in Data Flow Guard and Process Flow Guard:

• Data Flow Guard (DFG) determines task activation

• Process Flow Guard (PFG) defines the expected process flow

• Fault Logger (FL) annotation introduced:

• Conditions that identify a violation of the task’s constraints and

invalidate it

• If a task is invalidated, it is not terminated

13

Stage

D
Data Flow

Guard

P
Process Flow

Guard

Milestone

Fault Logger

[2] Baresi et al.: A GSM-based approach for monitoring cross organization business processes

using smart objects

© 2016 Luciano Baresi, Giovanni Meroni and Pierluigi Plebani

E-GSM Stage lifecycle

• E-GSM allows to monitor processes with respect to

three orthogonal dimensions:

• Execution

status:

• Unopened

• Opened

• Closed

• Execution

outcome:

• Regular

• Faulty

• Execution

compliance:

• OnTime

• OutOfOrder

• Skipped

14

OnTime

OutOfOrder

Regular

Faulty

Regular

Faulty

Skipped

Regular

Unopened

Closed Opened

Closed Opened

Closed Opened

Closed Opened

(S DFGi: S S) and (Active(S) or S.Mj in S PFGk)

S.FLl

S.DFGi and not S.PFGk

S.DFGi and S.PFGk

+S.Mj

+S.Mj

S.FLl

+S.Mj

+S.Mj

(S.DFGi or -S.Mj) and not S.PFGk

(S.DFGi or -S.Mj) and not S.PFGk

(S.DFGi or -S.Mj) and S.PFGk

(S.DFGi or -S.Mj) and S.PFGk

S.DFGi or -S.Mj

S.DFGi or -S.Mj

Unopened

S.DFGi

© 2016 Luciano Baresi, Giovanni Meroni and Pierluigi Plebani

E-GSM Stage lifecycle

• E-GSM allows to monitor processes with respect to

three orthogonal dimensions:

• Execution

status:

• Unopened

• Opened

• Closed

• Execution

outcome:

• Regular

• Faulty

• Execution

compliance:

• OnTime

• OutOfOrder

• Skipped

15

OnTime

OutOfOrder

Regular

Faulty

Regular

Faulty

Skipped

Regular

Unopened

Closed Opened

Closed Opened

Closed Opened

Closed Opened

(S DFGi: S S) and (Active(S) or S.Mj in S PFGk)

S.FLl

S.DFGi and not S.PFGk

S.DFGi and S.PFGk

+S.Mj

+S.Mj

S.FLl

+S.Mj

+S.Mj

(S.DFGi or -S.Mj) and not S.PFGk

(S.DFGi or -S.Mj) and not S.PFGk

(S.DFGi or -S.Mj) and S.PFGk

(S.DFGi or -S.Mj) and S.PFGk

S.DFGi or -S.Mj

S.DFGi or -S.Mj

Unopened

S.DFGi

© 2016 Luciano Baresi, Giovanni Meroni and Pierluigi Plebani

E-GSM Stage lifecycle

• E-GSM allows to monitor processes with respect to

three orthogonal dimensions:

• Execution

status:

• Unopened

• Opened

• Closed

• Execution

outcome:

• Regular

• Faulty

• Execution

compliance:

• OnTime

• OutOfOrder

• Skipped

16

OnTime

OutOfOrder

Regular

Faulty

Regular

Faulty

Skipped

Regular

Unopened

Closed Opened

Closed Opened

Closed Opened

Closed Opened

(S DFGi: S S) and (Active(S) or S.Mj in S PFGk)

S.FLl

S.DFGi and not S.PFGk

S.DFGi and S.PFGk

+S.Mj

+S.Mj

S.FLl

+S.Mj

+S.Mj

(S.DFGi or -S.Mj) and not S.PFGk

(S.DFGi or -S.Mj) and not S.PFGk

(S.DFGi or -S.Mj) and S.PFGk

(S.DFGi or -S.Mj) and S.PFGk

S.DFGi or -S.Mj

S.DFGi or -S.Mj

Unopened

S.DFGi

© 2016 Luciano Baresi, Giovanni Meroni and Pierluigi Plebani

E-GSM Stage lifecycle

• E-GSM allows to monitor processes with respect to

three orthogonal dimensions:

• Execution

status:

• Unopened

• Opened

• Closed

• Execution

outcome:

• Regular

• Faulty

• Execution

compliance:

• OnTime

• OutOfOrder

• Skipped

17

OnTime

OutOfOrder

Regular

Faulty

Regular

Faulty

Skipped

Regular

Unopened

Closed Opened

Closed Opened

Closed Opened

Closed Opened

(S DFGi: S S) and (Active(S) or S.Mj in S PFGk)

S.FLl

S.DFGi and not S.PFGk

S.DFGi and S.PFGk

+S.Mj

+S.Mj

S.FLl

+S.Mj

+S.Mj

(S.DFGi or -S.Mj) and not S.PFGk

(S.DFGi or -S.Mj) and not S.PFGk

(S.DFGi or -S.Mj) and S.PFGk

(S.DFGi or -S.Mj) and S.PFGk

S.DFGi or -S.Mj

S.DFGi or -S.Mj

Unopened

S.DFGi

© 2016 Luciano Baresi, Giovanni Meroni and Pierluigi Plebani

E-GSM Stage lifecycle

• E-GSM allows to monitor processes with respect to

three orthogonal dimensions:

• Execution

status:

• Unopened

• Opened

• Closed

• Execution

outcome:

• Regular

• Faulty

• Execution

compliance:

• OnTime

• OutOfOrder

• Skipped

18

OnTime

OutOfOrder

Regular

Faulty

Regular

Faulty

Skipped

Regular

Unopened

Closed Opened

Closed Opened

Closed Opened

Closed Opened

(S DFGi: S S) and (Active(S) or S.Mj in S PFGk)

S.FLl

S.DFGi and not S.PFGk

S.DFGi and S.PFGk

+S.Mj

+S.Mj

S.FLl

+S.Mj

+S.Mj

(S.DFGi or -S.Mj) and not S.PFGk

(S.DFGi or -S.Mj) and not S.PFGk

(S.DFGi or -S.Mj) and S.PFGk

(S.DFGi or -S.Mj) and S.PFGk

S.DFGi or -S.Mj

S.DFGi or -S.Mj

Unopened

S.DFGi

© 2016 Luciano Baresi, Giovanni Meroni and Pierluigi Plebani

E-GSM Stage lifecycle

• E-GSM allows to monitor processes with respect to

three orthogonal dimensions:

• Execution

status:

• Unopened

• Opened

• Closed

• Execution

outcome:

• Regular

• Faulty

• Execution

compliance:

• OnTime

• OutOfOrder

• Skipped

19

OnTime

OutOfOrder

Regular

Faulty

Regular

Faulty

Skipped

Regular

Unopened

Closed Opened

Closed Opened

Closed Opened

Closed Opened

(S DFGi: S S) and (Active(S) or S.Mj in S PFGk)

S.FLl

S.DFGi and not S.PFGk

S.DFGi and S.PFGk

+S.Mj

+S.Mj

S.FLl

+S.Mj

+S.Mj

(S.DFGi or -S.Mj) and not S.PFGk

(S.DFGi or -S.Mj) and not S.PFGk

(S.DFGi or -S.Mj) and S.PFGk

(S.DFGi or -S.Mj) and S.PFGk

S.DFGi or -S.Mj

S.DFGi or -S.Mj

Unopened

S.DFGi

© 2016 Luciano Baresi, Giovanni Meroni and Pierluigi Plebani

E-GSM Stage lifecycle

• E-GSM allows to monitor processes with respect to

three orthogonal dimensions:

• Execution

status:

• Unopened

• Opened

• Closed

• Execution

outcome:

• Regular

• Faulty

• Execution

compliance:

• OnTime

• OutOfOrder

• Skipped

20

OnTime

OutOfOrder

Regular

Faulty

Regular

Faulty

Skipped

Regular

Unopened

Closed Opened

Closed Opened

Closed Opened

Closed Opened

(S DFGi: S S) and (Active(S) or S.Mj in S PFGk)

S.FLl

S.DFGi and not S.PFGk

S.DFGi and S.PFGk

+S.Mj

+S.Mj

S.FLl

+S.Mj

+S.Mj

(S.DFGi or -S.Mj) and not S.PFGk

(S.DFGi or -S.Mj) and not S.PFGk

(S.DFGi or -S.Mj) and S.PFGk

(S.DFGi or -S.Mj) and S.PFGk

S.DFGi or -S.Mj

S.DFGi or -S.Mj

Unopened

S.DFGi

© 2016 Luciano Baresi, Giovanni Meroni and Pierluigi Plebani

E-GSM Stage lifecycle

• E-GSM allows to monitor processes with respect to

three orthogonal dimensions:

• Execution

status:

• Unopened

• Opened

• Closed

• Execution

outcome:

• Regular

• Faulty

• Execution

compliance:

• OnTime

• OutOfOrder

• Skipped

21

OnTime

OutOfOrder

Regular

Faulty

Regular

Faulty

Skipped

Regular

Unopened

Closed Opened

Closed Opened

Closed Opened

Closed Opened

(S DFGi: S S) and (Active(S) or S.Mj in S PFGk)

S.FLl

S.DFGi and not S.PFGk

S.DFGi and S.PFGk

+S.Mj

+S.Mj

S.FLl

+S.Mj

+S.Mj

(S.DFGi or -S.Mj) and not S.PFGk

(S.DFGi or -S.Mj) and not S.PFGk

(S.DFGi or -S.Mj) and S.PFGk

(S.DFGi or -S.Mj) and S.PFGk

S.DFGi or -S.Mj

S.DFGi or -S.Mj

Unopened

S.DFGi

© 2016 Luciano Baresi, Giovanni Meroni and Pierluigi Plebani

E-GSM Stage lifecycle

• E-GSM allows to monitor processes with respect to

three orthogonal dimensions:

• Execution

status:

• Unopened

• Opened

• Closed

• Execution

outcome:

• Regular

• Faulty

• Execution

compliance:

• OnTime

• OutOfOrder

• Skipped

22

OnTime

OutOfOrder

Regular

Faulty

Regular

Faulty

Skipped

Regular

Unopened

Closed Opened

Closed Opened

Closed Opened

Closed Opened

(S DFGi: S S) and (Active(S) or S.Mj in S PFGk)

S.FLl

S.DFGi and not S.PFGk

S.DFGi and S.PFGk

+S.Mj

+S.Mj

S.FLl

+S.Mj

+S.Mj

(S.DFGi or -S.Mj) and not S.PFGk

(S.DFGi or -S.Mj) and not S.PFGk

(S.DFGi or -S.Mj) and S.PFGk

(S.DFGi or -S.Mj) and S.PFGk

S.DFGi or -S.Mj

S.DFGi or -S.Mj

Unopened

S.DFGi

© 2016 Luciano Baresi, Giovanni Meroni and Pierluigi Plebani

E-GSM Stage lifecycle

• E-GSM allows to monitor processes with respect to

three orthogonal dimensions:

• Execution

status:

• Unopened

• Opened

• Closed

• Execution

outcome:

• Regular

• Faulty

• Execution

compliance:

• OnTime

• OutOfOrder

• Skipped

23

OnTime

OutOfOrder

Regular

Faulty

Regular

Faulty

Skipped

Regular

Unopened

Closed Opened

Closed Opened

Closed Opened

Closed Opened

(S DFGi: S S) and (Active(S) or S.Mj in S PFGk)

S.FLl

S.DFGi and not S.PFGk

S.DFGi and S.PFGk

+S.Mj

+S.Mj

S.FLl

+S.Mj

+S.Mj

(S.DFGi or -S.Mj) and not S.PFGk

(S.DFGi or -S.Mj) and not S.PFGk

(S.DFGi or -S.Mj) and S.PFGk

(S.DFGi or -S.Mj) and S.PFGk

S.DFGi or -S.Mj

S.DFGi or -S.Mj

Unopened

S.DFGi

© 2016 Luciano Baresi, Giovanni Meroni and Pierluigi Plebani

E-GSM Stage lifecycle

• E-GSM allows to monitor processes with respect to

three orthogonal dimensions:

• Execution

status:

• Unopened

• Opened

• Closed

• Execution

outcome:

• Regular

• Faulty

• Execution

compliance:

• OnTime

• OutOfOrder

• Skipped

24

OnTime

OutOfOrder

Regular

Faulty

Regular

Faulty

Skipped

Regular

Unopened

Closed Opened

Closed Opened

Closed Opened

Closed Opened

(S DFGi: S S) and (Active(S) or S.Mj in S PFGk)

S.FLl

S.DFGi and not S.PFGk

S.DFGi and S.PFGk

+S.Mj

+S.Mj

S.FLl

+S.Mj

+S.Mj

(S.DFGi or -S.Mj) and not S.PFGk

(S.DFGi or -S.Mj) and not S.PFGk

(S.DFGi or -S.Mj) and S.PFGk

(S.DFGi or -S.Mj) and S.PFGk

S.DFGi or -S.Mj

S.DFGi or -S.Mj

Unopened

S.DFGi

© 2016 Luciano Baresi, Giovanni Meroni and Pierluigi Plebani

E-GSM Stage lifecycle

• E-GSM allows to monitor processes with respect to

three orthogonal dimensions:

• Execution

status:

• Unopened

• Opened

• Closed

• Execution

outcome:

• Regular

• Faulty

• Execution

compliance:

• OnTime

• OutOfOrder

• Skipped

25

OnTime

OutOfOrder

Regular

Faulty

Regular

Faulty

Skipped

Regular

Unopened

Closed Opened

Closed Opened

Closed Opened

Closed Opened

(S DFGi: S S) and (Active(S) or S.Mj in S PFGk)

S.FLl

S.DFGi and not S.PFGk

S.DFGi and S.PFGk

+S.Mj

+S.Mj

S.FLl

+S.Mj

+S.Mj

(S.DFGi or -S.Mj) and not S.PFGk

(S.DFGi or -S.Mj) and not S.PFGk

(S.DFGi or -S.Mj) and S.PFGk

(S.DFGi or -S.Mj) and S.PFGk

S.DFGi or -S.Mj

S.DFGi or -S.Mj

Unopened

S.DFGi

© 2016 Luciano Baresi, Giovanni Meroni and Pierluigi Plebani

Severity classification

26

• By predicating on the execution state, outcome and compliance of

each stage, designers can define rules to let the process monitoring

assess how severely the execution of the whole process is affected.

• An example of severity classification is shown below

Severity Outcome (𝑆𝑦.o) Compliance (𝑆𝑧.c) Status (𝑆𝑥.s)

None ∀𝑆𝑦: 𝑆𝑦.o = regular ∀𝑆𝑧: 𝑆𝑧.c = onTime ∀𝑆𝑥: 𝑆𝑥.s = unopened ∨ 𝑆𝑥.s

= opened ∨ 𝑆𝑥.s = closed

Low ∀𝑆𝑦: 𝑆𝑦.o = regular ∃𝑆𝑧: 𝑆𝑧.c = outOfOrder ∀𝑆𝑥: 𝑆𝑥.s = unopened ∨ 𝑆𝑥.s

= closed

Medium-

low

∃𝑆𝑦: 𝑆𝑦.o = faulty ∀𝑆𝑧: 𝑆𝑧.c = onTime ∀𝑆𝑥: 𝑆𝑥.s = unopened ∨ 𝑆𝑥.s

= opened ∨ 𝑆𝑥.s = closed

Medium ∀𝑆𝑦: 𝑆𝑦.o = regular ∃𝑆𝑧: 𝑆𝑧.c = outOfOrder

∨ 𝑆𝑧.c = skipped

∃𝑆𝑥: 𝑆𝑥.s = opened

Medium-

high

∀𝑆𝑦: 𝑆𝑦.o = regular ∃𝑆𝑧: 𝑆𝑧.c = skipped ∀𝑆𝑥: 𝑆𝑥.s = unopened ∨ 𝑆𝑥.s

= closed

High ∃𝑆𝑦: 𝑆𝑦.o = faulty ∃𝑆𝑧: 𝑆𝑧.c = outOfOrder

∨ 𝑆𝑧.c = skipped

∀𝑆𝑥: 𝑆𝑥.s = unopened ∨ 𝑆𝑥.s

= opened ∨ 𝑆𝑥.s = closed

© 2016 Luciano Baresi, Giovanni Meroni and Pierluigi Plebani

Running example

• Simplified shipping process of temperature-sensitive

goods

• Goods are loaded by shipper R into thermally insulated containers

• R ships the container to inland terminal I

• I temporarily stores the container in warehouse

• Shipper T picks the terminal up from I and delivers to the customer

• All the goods requested by the customer must be shipped at once

• If the goods are exposed to high temperature, they must be

discarded

27

Inventory

Inventory
Shipment_req.BOM

Inventory =
Shipment_req.BOM

Delivery outcome

Locate missing
goods

Load goods
Ship to

terminal
Store in

warehouse

Goods damaged:
On NewSensorSample:
If Temperature > 0°C

Discard
goods

Ship to
consumer

Shipment req

© 2016 Luciano Baresi, Giovanni Meroni and Pierluigi Plebani

Translation by Example

Seq1

Inventory

Inventory
Shipment_req.BOM

Inventory =
Shipment_req.BOM

Delivery outcome

EExc

ShipTo

Consumer

M1:
[ShipToConsumer_t]

D
DFG1:

[ShipToConsumer_s]

Discard

Goods

M1:
[DiscardGoods_t]

D
DFG1:

[DiscardGoods_s]

M1: if
((ShipToConsumer.M1
and not
StoreInWarehouse.Me)
or (DiscardGoods.M1 and
StoreInWarehouse.Me))
and not
(Active(ShipToConsumer)
or Active(DiscardGoods))

D
DFG1:

[ShipToConsumer_s]

P
PFG1: (StoreInWarehouse.M1

or StoreInWarehouse.Me) and
not EExc.M1

D
DFG2:

[DiscardGoods_s]
P

PFG1: not StoreInWarehouse.Me
and not ShipToConsumer.M1
and not Active(DiscardGoods)

P
PFG1: StoreInWarehouse.Me and

not DiscardGoods.M1
and not Active(ShipToConsumer)

Delivery

Outcome

M1: on MessageSent
if body:delivery_outcome

D
DFG1: on MessageSent

if body:delivery_outcome

PPFG1: EExc.M1
 and not DeliveryOutcome.M1

Loop
Ite
Seq2

Load
Goods

D
DFG1:

[LoadGoods_s]
M1:
[LoadGoods_t]

Locate
Missing
GoodsP

PFG1: Seq2.M1 and
inventory!=shipment_req.BOM

 and not LocateMissingGoods.M1

M1: if Seq2.M1
and inventory=
shipment_req.BOM
and not Active(
LocateMissingGoods)

PPFG1: not Seq2.M1
M2: if Seq2.M1 and
CollectMissing
Goods.M1 and
inventory!=
shipment_req.BOM

M1: on
+Ite.M1

Shipment
Req

D
DFG1: on MessageReceived

if body:shipment_req
M1: on Message
if body:shipment_req

PPFG1: not
ShipmentReq.M1

Inventory

M1: on
MessageSent
if body:
inventory

D
DFG1: on MessageSent

if body:inventory

PPFG1: LoadGoods.M1
 and not Inventory.M1

PPFG1: not
LoadGoods.M1

D
DFG1:

[LoadGoods_s]

D

DFG2: on
MessageSent

if body:inventory

D
DFG1:

[LoadGoods_s]

D
DFG2: on

MessageSent
if body:inventory

D
DFG1:

[LocateMissingGoods_s]
M1:
[LocateMissingGoods_t]

D
DFG3: [Locate

MissingGoods_s]

M1: if
LoadGoods.M1
and Inventory.M1

D
DFG1:

[LoadGoods_s]

D
DFG2: on

MessageSent
if body:inventory

D
DFG3: [Locate

MissingGoods_s]

ShipTo
Terminal

D
DFG1:

[ShipToTerminal_s]
M1:
[ShipToTerminal_t]

PPFG1:Loop.M1 and not
ShipToTerminal.M1

StoreIn
Warehouse

D
DFG1:

[StoreInWarehouse_s]
M1:
[StoreInWarehouse_t]

FL1: on NewSensorValue
if Temperature: > 20°C

P
PFG1: ShipToTerminal.M1 and
not (StoreInWarehouse.M1 or

StoreInWarehouse.Me)

Me: on NewSensorValue
if Temperature: > 20°C

P
PFG1:

ShipmentReq.M1
and not Loop.M1

D

DFG1: on
MessageReceived

if body:shipment_req

D
DFG2:

[LoadGoods_s]

D
DFG3: on MessageSent

if body:inventory

D
DFG4:

[LocateMissingGoods_s]

D
DFG5:

[ShipToTerminal_s]

D
DFG6:

[StoreInWarehouse_s]

D
DFG7:

[ShipToConsumer_s]

D
DFG8:

[DiscardGoods_s]

D
DFG9: on MessageSent

if body:
delivery_outcome

M1: if
ShipmentReq.M1 and
Loop.M1 and
ShipToTerminal.M1 and
(StoreInWarehouse.M1 or
StoreInWarehouse.Me) and
EExc.M1 and
DeliveryOutcome.M1

Locate missing
goods

Load goods
Ship to

terminal
Store in

warehouse

Goods damaged:
On NewSensorSample:
If Temperature > 0°C

Discard
goods

Ship to
consumer

Shipment req

28

© 2016 Luciano Baresi, Giovanni Meroni and Pierluigi Plebani

Seq1

Inventory

Inventory
Shipment_req.BOM

Inventory =
Shipment_req.BOM

Delivery outcome

EExc

ShipTo

Consumer

M1:
[ShipToConsumer_t]

D
DFG1:

[ShipToConsumer_s]

Discard

Goods

M1:
[DiscardGoods_t]

D
DFG1:

[DiscardGoods_s]

M1: if
((ShipToConsumer.M1
and not
StoreInWarehouse.Me)
or (DiscardGoods.M1 and
StoreInWarehouse.Me))
and not
(Active(ShipToConsumer)
or Active(DiscardGoods))

D
DFG1:

[ShipToConsumer_s]

P
PFG1: (StoreInWarehouse.M1

or StoreInWarehouse.Me) and
not EExc.M1

D
DFG2:

[DiscardGoods_s]
P

PFG1: not StoreInWarehouse.Me
and not ShipToConsumer.M1
and not Active(DiscardGoods)

P
PFG1: StoreInWarehouse.Me and

not DiscardGoods.M1
and not Active(ShipToConsumer)

Delivery

Outcome

M1: on MessageSent
if body:delivery_outcome

D
DFG1: on MessageSent

if body:delivery_outcome

PPFG1: EExc.M1
 and not DeliveryOutcome.M1

Loop
Ite
Seq2

Load
Goods

D
DFG1:

[LoadGoods_s]
M1:
[LoadGoods_t]

Locate
Missing
GoodsP

PFG1: Seq2.M1 and
inventory!=shipment_req.BOM

 and not LocateMissingGoods.M1

M1: if Seq2.M1
and inventory=
shipment_req.BOM
and not Active(
LocateMissingGoods)

PPFG1: not Seq2.M1
M2: if Seq2.M1 and
CollectMissing
Goods.M1 and
inventory!=
shipment_req.BOM

M1: on
+Ite.M1

Shipment
Req

D
DFG1: on MessageReceived

if body:shipment_req
M1: on Message
if body:shipment_req

PPFG1: not
ShipmentReq.M1

Inventory

M1: on
MessageSent
if body:
inventory

D
DFG1: on MessageSent

if body:inventory

PPFG1: LoadGoods.M1
 and not Inventory.M1

PPFG1: not
LoadGoods.M1

D
DFG1:

[LoadGoods_s]

D

DFG2: on
MessageSent

if body:inventory

D
DFG1:

[LoadGoods_s]

D
DFG2: on

MessageSent
if body:inventory

D
DFG1:

[LocateMissingGoods_s]
M1:
[LocateMissingGoods_t]

D
DFG3: [Locate

MissingGoods_s]

M1: if
LoadGoods.M1
and Inventory.M1

D
DFG1:

[LoadGoods_s]

D
DFG2: on

MessageSent
if body:inventory

D
DFG3: [Locate

MissingGoods_s]

ShipTo
Terminal

D
DFG1:

[ShipToTerminal_s]
M1:
[ShipToTerminal_t]

PPFG1:Loop.M1 and not
ShipToTerminal.M1

StoreIn
Warehouse

D
DFG1:

[StoreInWarehouse_s]
M1:
[StoreInWarehouse_t]

FL1: on NewSensorValue
if Temperature: > 20°C

P
PFG1: ShipToTerminal.M1 and
not (StoreInWarehouse.M1 or

StoreInWarehouse.Me)

Me: on NewSensorValue
if Temperature: > 20°C

P
PFG1:

ShipmentReq.M1
and not Loop.M1

D

DFG1: on
MessageReceived

if body:shipment_req

D
DFG2:

[LoadGoods_s]

D
DFG3: on MessageSent

if body:inventory

D
DFG4:

[LocateMissingGoods_s]

D
DFG5:

[ShipToTerminal_s]

D
DFG6:

[StoreInWarehouse_s]

D
DFG7:

[ShipToConsumer_s]

D
DFG8:

[DiscardGoods_s]

D
DFG9: on MessageSent

if body:
delivery_outcome

M1: if
ShipmentReq.M1 and
Loop.M1 and
ShipToTerminal.M1 and
(StoreInWarehouse.M1 or
StoreInWarehouse.Me) and
EExc.M1 and
DeliveryOutcome.M1

Locate missing
goods

Load goods
Ship to

terminal
Store in

warehouse

Goods damaged:
On NewSensorSample:
If Temperature > 0°C

Discard
goods

Ship to
consumer

Shipment req

Goods damaged:
On NewSensorSample:
If Temperature > 0°C

Translation by Example

Activities

29

Load
Goods

D
DFG1:

[LoadGoods_s]
M1:
[LoadGoods_t]

StoreIn
Warehouse

D
DFG1:

[StoreInWarehouse_s]
M1:
[StoreInWarehouse_t]

FL1: on NewSensorValue
if Temperature: > 20°C

Me: on NewSensorValue
if Temperature: > 20°C

© 2016 Luciano Baresi, Giovanni Meroni and Pierluigi Plebani

Seq1

Inventory

Inventory
Shipment_req.BOM

Inventory =
Shipment_req.BOM

Delivery outcome

EExc

ShipTo

Consumer

M1:
[ShipToConsumer_t]

D
DFG1:

[ShipToConsumer_s]

Discard

Goods

M1:
[DiscardGoods_t]

D
DFG1:

[DiscardGoods_s]

M1: if
((ShipToConsumer.M1
and not
StoreInWarehouse.Me)
or (DiscardGoods.M1 and
StoreInWarehouse.Me))
and not
(Active(ShipToConsumer)
or Active(DiscardGoods))

D
DFG1:

[ShipToConsumer_s]

P
PFG1: (StoreInWarehouse.M1

or StoreInWarehouse.Me) and
not EExc.M1

D
DFG2:

[DiscardGoods_s]
P

PFG1: not StoreInWarehouse.Me
and not ShipToConsumer.M1
and not Active(DiscardGoods)

P
PFG1: StoreInWarehouse.Me and

not DiscardGoods.M1
and not Active(ShipToConsumer)

Delivery

Outcome

M1: on MessageSent
if body:delivery_outcome

D
DFG1: on MessageSent

if body:delivery_outcome

PPFG1: EExc.M1
 and not DeliveryOutcome.M1

Loop
Ite
Seq2

Load
Goods

D
DFG1:

[LoadGoods_s]
M1:
[LoadGoods_t]

Locate
Missing
GoodsP

PFG1: Seq2.M1 and
inventory!=shipment_req.BOM

 and not LocateMissingGoods.M1

M1: if Seq2.M1
and inventory=
shipment_req.BOM
and not Active(
LocateMissingGoods)

PPFG1: not Seq2.M1
M2: if Seq2.M1 and
CollectMissing
Goods.M1 and
inventory!=
shipment_req.BOM

M1: on
+Ite.M1

Shipment
Req

D
DFG1: on MessageReceived

if body:shipment_req
M1: on Message
if body:shipment_req

PPFG1: not
ShipmentReq.M1

Inventory

M1: on
MessageSent
if body:
inventory

D
DFG1: on MessageSent

if body:inventory

PPFG1: LoadGoods.M1
 and not Inventory.M1

PPFG1: not
LoadGoods.M1

D
DFG1:

[LoadGoods_s]

D

DFG2: on
MessageSent

if body:inventory

D
DFG1:

[LoadGoods_s]

D
DFG2: on

MessageSent
if body:inventory

D
DFG1:

[LocateMissingGoods_s]
M1:
[LocateMissingGoods_t]

D
DFG3: [Locate

MissingGoods_s]

M1: if
LoadGoods.M1
and Inventory.M1

D
DFG1:

[LoadGoods_s]

D
DFG2: on

MessageSent
if body:inventory

D
DFG3: [Locate

MissingGoods_s]

ShipTo
Terminal

D
DFG1:

[ShipToTerminal_s]
M1:
[ShipToTerminal_t]

PPFG1:Loop.M1 and not
ShipToTerminal.M1

StoreIn
Warehouse

D
DFG1:

[StoreInWarehouse_s]
M1:
[StoreInWarehouse_t]

FL1: on NewSensorValue
if Temperature: > 20°C

P
PFG1: ShipToTerminal.M1 and
not (StoreInWarehouse.M1 or

StoreInWarehouse.Me)

Me: on NewSensorValue
if Temperature: > 20°C

P
PFG1:

ShipmentReq.M1
and not Loop.M1

D

DFG1: on
MessageReceived

if body:shipment_req

D
DFG2:

[LoadGoods_s]

D
DFG3: on MessageSent

if body:inventory

D
DFG4:

[LocateMissingGoods_s]

D
DFG5:

[ShipToTerminal_s]

D
DFG6:

[StoreInWarehouse_s]

D
DFG7:

[ShipToConsumer_s]

D
DFG8:

[DiscardGoods_s]

D
DFG9: on MessageSent

if body:
delivery_outcome

M1: if
ShipmentReq.M1 and
Loop.M1 and
ShipToTerminal.M1 and
(StoreInWarehouse.M1 or
StoreInWarehouse.Me) and
EExc.M1 and
DeliveryOutcome.M1

Locate missing
goods

Load goods
Ship to

terminal
Store in

warehouse

Goods damaged:
On NewSensorSample:
If Temperature > 0°C

Discard
goods

Ship to
consumer

Shipment req

Translation by Example

Non-boundary Events

30

Inventory

M1: on
MessageSent
if body:
inventory

D
DFG1: on MessageSent

if body:inventory

© 2016 Luciano Baresi, Giovanni Meroni and Pierluigi Plebani

Translation by Example

Inner Sequence Block

31

Seq1

Inventory

Inventory
Shipment_req.BOM

Inventory =
Shipment_req.BOM

Delivery outcome

EExc

ShipTo

Consumer

M1:
[ShipToConsumer_t]

D
DFG1:

[ShipToConsumer_s]

Discard

Goods

M1:
[DiscardGoods_t]

D
DFG1:

[DiscardGoods_s]

M1: if
((ShipToConsumer.M1
and not
StoreInWarehouse.Me)
or (DiscardGoods.M1 and
StoreInWarehouse.Me))
and not
(Active(ShipToConsumer)
or Active(DiscardGoods))

D
DFG1:

[ShipToConsumer_s]

P
PFG1: (StoreInWarehouse.M1

or StoreInWarehouse.Me) and
not EExc.M1

D
DFG2:

[DiscardGoods_s]
P

PFG1: not StoreInWarehouse.Me
and not ShipToConsumer.M1
and not Active(DiscardGoods)

P
PFG1: StoreInWarehouse.Me and

not DiscardGoods.M1
and not Active(ShipToConsumer)

Delivery

Outcome

M1: on MessageSent
if body:delivery_outcome

D
DFG1: on MessageSent

if body:delivery_outcome

PPFG1: EExc.M1
 and not DeliveryOutcome.M1

Loop
Ite
Seq2

Load
Goods

D
DFG1:

[LoadGoods_s]
M1:
[LoadGoods_t]

Locate
Missing
GoodsP

PFG1: Seq2.M1 and
inventory!=shipment_req.BOM

 and not LocateMissingGoods.M1

M1: if Seq2.M1
and inventory=
shipment_req.BOM
and not Active(
LocateMissingGoods)

PPFG1: not Seq2.M1
M2: if Seq2.M1 and
CollectMissing
Goods.M1 and
inventory!=
shipment_req.BOM

M1: on
+Ite.M1

Shipment
Req

D
DFG1: on MessageReceived

if body:shipment_req
M1: on Message
if body:shipment_req

PPFG1: not
ShipmentReq.M1

Inventory

M1: on
MessageSent
if body:
inventory

D
DFG1: on MessageSent

if body:inventory

PPFG1: LoadGoods.M1
 and not Inventory.M1

PPFG1: not
LoadGoods.M1

D
DFG1:

[LoadGoods_s]

D

DFG2: on
MessageSent

if body:inventory

D
DFG1:

[LoadGoods_s]

D
DFG2: on

MessageSent
if body:inventory

D
DFG1:

[LocateMissingGoods_s]
M1:
[LocateMissingGoods_t]

D
DFG3: [Locate

MissingGoods_s]

M1: if
LoadGoods.M1
and Inventory.M1

D
DFG1:

[LoadGoods_s]

D
DFG2: on

MessageSent
if body:inventory

D
DFG3: [Locate

MissingGoods_s]

ShipTo
Terminal

D
DFG1:

[ShipToTerminal_s]
M1:
[ShipToTerminal_t]

PPFG1:Loop.M1 and not
ShipToTerminal.M1

StoreIn
Warehouse

D
DFG1:

[StoreInWarehouse_s]
M1:
[StoreInWarehouse_t]

FL1: on NewSensorValue
if Temperature: > 20°C

P
PFG1: ShipToTerminal.M1 and
not (StoreInWarehouse.M1 or

StoreInWarehouse.Me)

Me: on NewSensorValue
if Temperature: > 20°C

P
PFG1:

ShipmentReq.M1
and not Loop.M1

D

DFG1: on
MessageReceived

if body:shipment_req

D
DFG2:

[LoadGoods_s]

D
DFG3: on MessageSent

if body:inventory

D
DFG4:

[LocateMissingGoods_s]

D
DFG5:

[ShipToTerminal_s]

D
DFG6:

[StoreInWarehouse_s]

D
DFG7:

[ShipToConsumer_s]

D
DFG8:

[DiscardGoods_s]

D
DFG9: on MessageSent

if body:
delivery_outcome

M1: if
ShipmentReq.M1 and
Loop.M1 and
ShipToTerminal.M1 and
(StoreInWarehouse.M1 or
StoreInWarehouse.Me) and
EExc.M1 and
DeliveryOutcome.M1

Locate missing
goods

Load goods
Ship to

terminal
Store in

warehouse

Goods damaged:
On NewSensorSample:
If Temperature > 0°C

Discard
goods

Ship to
consumer

Shipment req Inventory

Seq2

Load
Goods

D
DFG1:

[LoadGoods_s]
M1:
[LoadGoods_t]

Inventory

M1: on
MessageSent
if body:
inventory

D
DFG1: on MessageSent

if body:inventory

PPFG1: LoadGoods.M1
 and not Inventory.M1

PPFG1: not
LoadGoods.M1

D
DFG1:

[LoadGoods_s]

D

DFG2: on
MessageSent

if body:inventory

M1: if
LoadGoods.M1
and Inventory.M1

© 2016 Luciano Baresi, Giovanni Meroni and Pierluigi Plebani

Seq1

EExc

ShipTo

Consumer

M1:
[ShipToConsumer_t]

D
DFG1:

[ShipToConsumer_s]

Discard

Goods

M1:
[DiscardGoods_t]

D
DFG1:

[DiscardGoods_s]

M1: if
((ShipToConsumer.M1
and not
StoreInWarehouse.Me)
or (DiscardGoods.M1 and
StoreInWarehouse.Me))
and not
(Active(ShipToConsumer)
or Active(DiscardGoods))

D
DFG1:

[ShipToConsumer_s]

P
PFG1: (StoreInWarehouse.M1

or StoreInWarehouse.Me) and
not EExc.M1

D
DFG2:

[DiscardGoods_s]
P

PFG1: not StoreInWarehouse.Me
and not ShipToConsumer.M1
and not Active(DiscardGoods)

P
PFG1: StoreInWarehouse.Me and

not DiscardGoods.M1
and not Active(ShipToConsumer)

Delivery

Outcome

M1: on MessageSent
if body:delivery_outcome

D
DFG1: on MessageSent

if body:delivery_outcome

PPFG1: EExc.M1
 and not DeliveryOutcome.M1

Loop
Ite
Seq2

Load
Goods

D
DFG1:

[LoadGoods_s]
M1:
[LoadGoods_t]

Locate
Missing
GoodsP

PFG1: Seq2.M1 and
inventory!=shipment_req.BOM

 and not LocateMissingGoods.M1

M1: if Seq2.M1
and inventory=
shipment_req.BOM
and not Active(
LocateMissingGoods)

PPFG1: not Seq2.M1
M2: if Seq2.M1 and
CollectMissing
Goods.M1 and
inventory!=
shipment_req.BOM

M1: on
+Ite.M1

Shipment
Req

D
DFG1: on MessageReceived

if body:shipment_req
M1: on Message
if body:shipment_req

PPFG1: not
ShipmentReq.M1

Inventory

M1: on
MessageSent
if body:
inventory

D
DFG1: on MessageSent

if body:inventory

PPFG1: LoadGoods.M1
 and not Inventory.M1

PPFG1: not
LoadGoods.M1

D
DFG1:

[LoadGoods_s]

D

DFG2: on
MessageSent

if body:inventory

D
DFG1:

[LoadGoods_s]

D
DFG2: on

MessageSent
if body:inventory

D
DFG1:

[LocateMissingGoods_s]
M1:
[LocateMissingGoods_t]

D
DFG3: [Locate

MissingGoods_s]

M1: if
LoadGoods.M1
and Inventory.M1

D
DFG1:

[LoadGoods_s]

D
DFG2: on

MessageSent
if body:inventory

D
DFG3: [Locate

MissingGoods_s]

ShipTo
Terminal

D
DFG1:

[ShipToTerminal_s]
M1:
[ShipToTerminal_t]

PPFG1:Loop.M1 and not
ShipToTerminal.M1

StoreIn
Warehouse

D
DFG1:

[StoreInWarehouse_s]
M1:
[StoreInWarehouse_t]

FL1: on NewSensorValue
if Temperature: > 20°C

P
PFG1: ShipToTerminal.M1 and
not (StoreInWarehouse.M1 or

StoreInWarehouse.Me)

Me: on NewSensorValue
if Temperature: > 20°C

P
PFG1:

ShipmentReq.M1
and not Loop.M1

D

DFG1: on
MessageReceived

if body:shipment_req

D
DFG2:

[LoadGoods_s]

D
DFG3: on MessageSent

if body:inventory

D
DFG4:

[LocateMissingGoods_s]

D
DFG5:

[ShipToTerminal_s]

D
DFG6:

[StoreInWarehouse_s]

D
DFG7:

[ShipToConsumer_s]

D
DFG8:

[DiscardGoods_s]

D
DFG9: on MessageSent

if body:
delivery_outcome

M1: if
ShipmentReq.M1 and
Loop.M1 and
ShipToTerminal.M1 and
(StoreInWarehouse.M1 or
StoreInWarehouse.Me) and
EExc.M1 and
DeliveryOutcome.M1

Inventory

Inventory
Shipment_req.BOM

Inventory =
Shipment_req.BOM

Delivery outcome

Locate missing
goods

Load goods
Ship to

terminal
Store in

warehouse

Goods damaged:
On NewSensorSample:
If Temperature > 0°C

Discard
goods

Ship to
consumer

Shipment req Inventory

Translation by Example

Loop Block

32

Loop
Ite
Seq2

Load
Goods

D
DFG1:

[LoadGoods_s]
M1:
[LoadGoods_t]

Locate
Missing
GoodsP

PFG1: Seq2.M1 and
inventory!=shipment_req.BOM

 and not LocateMissingGoods.M1

M1: if Seq2.M1
and inventory=
shipment_req.BOM
and not Active(
LocateMissingGoods)

PPFG1: not Seq2.M1
M2: if Seq2.M1 and
CollectMissing
Goods.M1 and
inventory!=
shipment_req.BOM

M1: on
+Ite.M1

Inventory

M1: on
MessageSent
if body:
inventory

D
DFG1: on MessageSent

if body:inventory

PPFG1: LoadGoods.M1
 and not Inventory.M1

PPFG1: not
LoadGoods.M1

D
DFG1:

[LoadGoods_s]

D

DFG2: on
MessageSent

if body:inventory

D
DFG1:

[LoadGoods_s]

D
DFG2: on

MessageSent
if body:inventory

D
DFG1:

[LocateMissingGoods_s]
M1:
[LocateMissingGoods_t]

D
DFG3: [Locate

MissingGoods_s]

M1: if
LoadGoods.M1
and Inventory.M1

D
DFG1:

[LoadGoods_s]

D
DFG2: on

MessageSent
if body:inventory

D
DFG3: [Locate

MissingGoods_s]

P
PFG1:

ShipmentReq.M1
and not Loop.M1

© 2016 Luciano Baresi, Giovanni Meroni and Pierluigi Plebani

Inventory

Inventory
Shipment_req.BOM

Inventory =
Shipment_req.BOM

Delivery outcome

Locate missing
goods

Load goods
Ship to

terminal
Store in

warehouse

Goods damaged:
On NewSensorSample:
If Temperature > 0°C

Discard
goods

Ship to
consumer

Shipment req

Seq1

EExc

ShipTo

Consumer

M1:
[ShipToConsumer_t]

D
DFG1:

[ShipToConsumer_s]

Discard

Goods

M1:
[DiscardGoods_t]

D
DFG1:

[DiscardGoods_s]

M1: if
((ShipToConsumer.M1
and not
StoreInWarehouse.Me)
or (DiscardGoods.M1 and
StoreInWarehouse.Me))
and not
(Active(ShipToConsumer)
or Active(DiscardGoods))

D
DFG1:

[ShipToConsumer_s]

P
PFG1: (StoreInWarehouse.M1

or StoreInWarehouse.Me) and
not EExc.M1

D
DFG2:

[DiscardGoods_s]
P

PFG1: not StoreInWarehouse.Me
and not ShipToConsumer.M1
and not Active(DiscardGoods)

P
PFG1: StoreInWarehouse.Me and

not DiscardGoods.M1
and not Active(ShipToConsumer)

Delivery

Outcome

M1: on MessageSent
if body:delivery_outcome

D
DFG1: on MessageSent

if body:delivery_outcome

PPFG1: EExc.M1
 and not DeliveryOutcome.M1

Loop
Ite
Seq2

Load
Goods

D
DFG1:

[LoadGoods_s]
M1:
[LoadGoods_t]

Locate
Missing
GoodsP

PFG1: Seq2.M1 and
inventory!=shipment_req.BOM

 and not LocateMissingGoods.M1

M1: if Seq2.M1
and inventory=
shipment_req.BOM
and not Active(
LocateMissingGoods)

PPFG1: not Seq2.M1
M2: if Seq2.M1 and
CollectMissing
Goods.M1 and
inventory!=
shipment_req.BOM

M1: on
+Ite.M1

Shipment
Req

D
DFG1: on MessageReceived

if body:shipment_req
M1: on Message
if body:shipment_req

PPFG1: not
ShipmentReq.M1

Inventory

M1: on
MessageSent
if body:
inventory

D
DFG1: on MessageSent

if body:inventory

PPFG1: LoadGoods.M1
 and not Inventory.M1

PPFG1: not
LoadGoods.M1

D
DFG1:

[LoadGoods_s]

D

DFG2: on
MessageSent

if body:inventory

D
DFG1:

[LoadGoods_s]

D
DFG2: on

MessageSent
if body:inventory

D
DFG1:

[LocateMissingGoods_s]
M1:
[LocateMissingGoods_t]

D
DFG3: [Locate

MissingGoods_s]

M1: if
LoadGoods.M1
and Inventory.M1

D
DFG1:

[LoadGoods_s]

D
DFG2: on

MessageSent
if body:inventory

D
DFG3: [Locate

MissingGoods_s]

ShipTo
Terminal

D
DFG1:

[ShipToTerminal_s]
M1:
[ShipToTerminal_t]

PPFG1:Loop.M1 and not
ShipToTerminal.M1

StoreIn
Warehouse

D
DFG1:

[StoreInWarehouse_s]
M1:
[StoreInWarehouse_t]

FL1: on NewSensorValue
if Temperature: > 20°C

P
PFG1: ShipToTerminal.M1 and
not (StoreInWarehouse.M1 or

StoreInWarehouse.Me)

Me: on NewSensorValue
if Temperature: > 20°C

P
PFG1:

ShipmentReq.M1
and not Loop.M1

D

DFG1: on
MessageReceived

if body:shipment_req

D
DFG2:

[LoadGoods_s]

D
DFG3: on MessageSent

if body:inventory

D
DFG4:

[LocateMissingGoods_s]

D
DFG5:

[ShipToTerminal_s]

D
DFG6:

[StoreInWarehouse_s]

D
DFG7:

[ShipToConsumer_s]

D
DFG8:

[DiscardGoods_s]

D
DFG9: on MessageSent

if body:
delivery_outcome

M1: if
ShipmentReq.M1 and
Loop.M1 and
ShipToTerminal.M1 and
(StoreInWarehouse.M1 or
StoreInWarehouse.Me) and
EExc.M1 and
DeliveryOutcome.M1

Goods damaged:
On NewSensorSample:
If Temperature > 0°C

Translation by Example

Forward Exception Handling Block

33

EExc

ShipTo

Consumer

M1:
[ShipToConsumer_t]

D
DFG1:

[ShipToConsumer_s]

Discard

Goods

M1:
[DiscardGoods_t]

D
DFG1:

[DiscardGoods_s]

M1: if
((ShipToConsumer.M1
and not
StoreInWarehouse.Me)
or (DiscardGoods.M1 and
StoreInWarehouse.Me))
and not
(Active(ShipToConsumer)
or Active(DiscardGoods))

D
DFG1:

[ShipToConsumer_s]

P
PFG1: (StoreInWarehouse.M1

or StoreInWarehouse.Me) and
not EExc.M1

D
DFG2:

[DiscardGoods_s]
P

PFG1: not StoreInWarehouse.Me
and not ShipToConsumer.M1
and not Active(DiscardGoods)

P
PFG1: StoreInWarehouse.Me and

not DiscardGoods.M1
and not Active(ShipToConsumer)

© 2016 Luciano Baresi, Giovanni Meroni and Pierluigi Plebani

Translation by Example

Outer Sequence Block

34

Inventory

Inventory
Shipment_req.BOM

Inventory =
Shipment_req.BOM

Delivery outcome

Locate missing
goods

Load goods
Ship to

terminal
Store in

warehouse

Goods damaged:
On NewSensorSample:
If Temperature > 0°C

Discard
goods

Ship to
consumer

Shipment req Inventory

Inventory
Shipment_req.BOM

Locate missing
goods

Load goods

Inventory

Ship to
terminal

Inventory Delivery outcomeShipment req

Seq1

EExc

ShipTo

Consumer

M1:
[ShipToConsumer_t]

D
DFG1:

[ShipToConsumer_s]

Discard

Goods

M1:
[DiscardGoods_t]

D
DFG1:

[DiscardGoods_s]

M1: if
((ShipToConsumer.M1
and not
StoreInWarehouse.Me)
or (DiscardGoods.M1 and
StoreInWarehouse.Me))
and not
(Active(ShipToConsumer)
or Active(DiscardGoods))

D
DFG1:

[ShipToConsumer_s]

P
PFG1: (StoreInWarehouse.M1

or StoreInWarehouse.Me) and
not EExc.M1

D
DFG2:

[DiscardGoods_s]
P

PFG1: not StoreInWarehouse.Me
and not ShipToConsumer.M1
and not Active(DiscardGoods)

P
PFG1: StoreInWarehouse.Me and

not DiscardGoods.M1
and not Active(ShipToConsumer)

Delivery

Outcome

M1: on MessageSent
if body:delivery_outcome

D
DFG1: on MessageSent

if body:delivery_outcome

PPFG1: EExc.M1
 and not DeliveryOutcome.M1

Loop
Ite
Seq2

Load
Goods

D
DFG1:

[LoadGoods_s]
M1:
[LoadGoods_t]

Locate
Missing
GoodsP

PFG1: Seq2.M1 and
inventory!=shipment_req.BOM

 and not LocateMissingGoods.M1

M1: if Seq2.M1
and inventory=
shipment_req.BOM
and not Active(
LocateMissingGoods)

PPFG1: not Seq2.M1
M2: if Seq2.M1 and
CollectMissing
Goods.M1 and
inventory!=
shipment_req.BOM

M1: on
+Ite.M1

Shipment
Req

D
DFG1: on MessageReceived

if body:shipment_req
M1: on Message
if body:shipment_req

PPFG1: not
ShipmentReq.M1

Inventory

M1: on
MessageSent
if body:
inventory

D
DFG1: on MessageSent

if body:inventory

PPFG1: LoadGoods.M1
 and not Inventory.M1

PPFG1: not
LoadGoods.M1

D
DFG1:

[LoadGoods_s]

D

DFG2: on
MessageSent

if body:inventory

D
DFG1:

[LoadGoods_s]

D
DFG2: on

MessageSent
if body:inventory

D
DFG1:

[LocateMissingGoods_s]
M1:
[LocateMissingGoods_t]

D
DFG3: [Locate

MissingGoods_s]

M1: if
LoadGoods.M1
and Inventory.M1

D
DFG1:

[LoadGoods_s]

D
DFG2: on

MessageSent
if body:inventory

D
DFG3: [Locate

MissingGoods_s]

ShipTo
Terminal

D
DFG1:

[ShipToTerminal_s]
M1:
[ShipToTerminal_t]

PPFG1:Loop.M1 and not
ShipToTerminal.M1

StoreIn
Warehouse

D
DFG1:

[StoreInWarehouse_s]
M1:
[StoreInWarehouse_t]

FL1: on NewSensorValue
if Temperature: > 20°C

P
PFG1: ShipToTerminal.M1 and
not (StoreInWarehouse.M1 or

StoreInWarehouse.Me)

Me: on NewSensorValue
if Temperature: > 20°C

P
PFG1:

ShipmentReq.M1
and not Loop.M1

D

DFG1: on
MessageReceived

if body:shipment_req

D
DFG2:

[LoadGoods_s]

D
DFG3: on MessageSent

if body:inventory

D
DFG4:

[LocateMissingGoods_s]

D
DFG5:

[ShipToTerminal_s]

D
DFG6:

[StoreInWarehouse_s]

D
DFG7:

[ShipToConsumer_s]

D
DFG8:

[DiscardGoods_s]

D
DFG9: on MessageSent

if body:
delivery_outcome

M1: if
ShipmentReq.M1 and
Loop.M1 and
ShipToTerminal.M1 and
(StoreInWarehouse.M1 or
StoreInWarehouse.Me) and
EExc.M1 and
DeliveryOutcome.M1

© 2016 Luciano Baresi, Giovanni Meroni and Pierluigi Plebani

From BPMN to E-GSM

Automating the translation

• BPMN to E-GSM

translator

implemented in

ATLAS

Transformation

Language (ATL) [3]

• Using OMG BPMN 2.0

specifications as

source model

• Using XML-based GSM

definitions from

Barcelona [4] as target

model

35

[3] Jouault et al.: ATL: a QVT-like transformation language

[4] Heath et al.: Barcelona: A design and runtime environment for declarative artifact-centric BPM.

Source model
OMG BPMN 2.0

XML

Target model
Barcelona GSM

XML

ATL
transformation

model
Non existent

Source
metamodel

OMG BPMN 2.0
metamodel

ATL
Target

metamodel
Barcelona GSM

XML DTDs

MOF

Translation

© 2016 Luciano Baresi, Giovanni Meroni and Pierluigi Plebani

Validation

• By exploiting the IoT paradigm, the shipping container

can be turned into a smart object running an E-GSM

engine

• The E-GSM model derived from the BPMN process feeds the

engine and allows the container to monitor the whole process

36

Producer

StoreIn

Warehouse?

Seq1

EExc

ShipTo

Consumer

M1:
[ShipToConsumer_t]

D
DFG1: [ShipToConsumer_s]

Discard

Goods

M1: [DiscardGoods_t]D
DFG1:

[DiscardGoods_s]

M1: if ((ShipToConsumer.M1
and not
StoreInWarehouse.Me) or
(DiscardGoods.M1 and
StoreInWarehouse.Me)) and
not (Active(ShipToConsumer)
or Active(DiscardGoods))

DDFG1: [ShipToConsumer_s]

P
PFG1: (StoreInWarehouse.M1 or
StoreInWarehouse.Me) and not

EExc.M1

D
DFG2:

[DiscardGoods_s]
P

PFG1: not StoreInWarehouse.Me
and not ShipToConsumer.M1
and not Active(DiscardGoods)

P
PFG1: StoreInWarehouse.Me and not

DiscardGoods.M1
and not Active(ShipToConsumer)

Delivery

Outcome

M1: on MessageSent
if body:delivery_outcome

D
DFG1: on MessageSent

if body:delivery_outcome

PPFG1: EExc.M1
 and not DeliveryOutcome.M1

Loop

Ite

Seq2

Load
Goods

DDFG1: [LoadGoods_s] M1:
[LoadGoods_t]

Locate
Missing
GoodsPPFG1: Seq2.M1 and

inventory!=shipment_req.BOM
 and not LocateMissingGoods.M1

M1: if Seq2.M1
and inventory=
shipment_req.BOM
and not Active(
LocateMissingGoods)

PPFG1: not Seq2.M1
M2: if Seq2.M1 and
CollectMissing
Goods.M1 and inventory!=
shipment_req.BOM

M1: on
+Ite.M1

Shipment
Req

D
DFG1: on MessageReceived

if body:shipment_req
M1: on Message
if body:shipment_req

PPFG1: not
ShipmentReq.M1

Inventory

M1: on
MessageSent
if body:
inventory

D
DFG1: on MessageSent

if body:inventory

PPFG1: LoadGoods.M1
 and not Inventory.M1

PPFG1: not
LoadGoods.M1

DDFG1: [LoadGoods_s]

D

DFG2: on
MessageSent

if body:inventory

DDFG1: [LoadGoods_s]

D
DFG2: on

MessageSent
if body:inventory

D
DFG1:

[LocateMissingGoods_s] M1: [LocateMissingGoods_t]

D
DFG3: [Locate

MissingGoods_s]

M1: if
LoadGoods.M1
and Inventory.M1

DDFG1: [LoadGoods_s]

D
DFG2: on

MessageSent
if body:inventory

D
DFG3: [Locate

MissingGoods_s]

ShipTo
Terminal

D
DFG1:

[ShipToTerminal_s]
M1:
[ShipToTerminal_t]

PPFG1:Loop.M1 and not
ShipToTerminal.M1

StoreIn
Warehouse

D
DFG1:

[StoreInWarehouse_s]
M1: [StoreInWarehouse_t]

FL1: on NewSensorValue
if Temperature: > 20°C

P
PFG1: ShipToTerminal.M1 and not

(StoreInWarehouse.M1 or
StoreInWarehouse.Me)

Me: on NewSensorValue
if Temperature: > 20°C

PPFG1: ShipmentReq.M1
and not Loop.M1

D

DFG1: on
MessageReceived

if body:shipment_req

DDFG2: [LoadGoods_s]

D
DFG3: on MessageSent

if body:inventory

D
DFG4:

[LocateMissingGoods_s]

D
DFG5:

[ShipToTerminal_s]

D
DFG6:

[StoreInWarehouse_s]

DDFG7: [ShipToConsumer_s]

D
DFG8:

[DiscardGoods_s]

D
DFG9: on MessageSent

if body:
delivery_outcome

M1: if
ShipmentReq.M1 and Loop.M1
and ShipToTerminal.M1 and
(StoreInWarehouse.M1 or
StoreInWarehouse.Me) and
EExc.M1 and DeliveryOutcome.M1

© 2016 Luciano Baresi, Giovanni Meroni and Pierluigi Plebani

Validation

A catastrophic execution

• Cooling system of the

warehouse breaks down

• Goods are exposed to

high temperature and

are spoiled

37

• This causes an economic

loss

• This exception is foreseen

in the process model

• The inland terminal must

discard the goods and

terminate the process

• Customer N is unaffected

• Up to now, the situation is

not so critical

© 2016 Luciano Baresi, Giovanni Meroni and Pierluigi Plebani

Validation

A catastrophic execution

• Cooling system of the

warehouse breaks down

• Goods are exposed to

high temperature and

are spoiled

38

EExc

ShipTo

Consumer

M1:
[ShipToConsumer_t]

D
DFG1:

[ShipToConsumer_s]

Discard

Goods

M1:
[DiscardGoods_t]

D
DFG1:

[DiscardGoods_s]

M1: if
((ShipToConsumer.M1
and not
StoreInWarehouse.Me)
or (DiscardGoods.M1 and
StoreInWarehouse.Me))
and not
(Active(ShipToConsumer)
or Active(DiscardGoods))

D
DFG1:

[ShipToConsumer_s]

P
PFG1: (StoreInWarehouse.M1

or StoreInWarehouse.Me) and
not EExc.M1

D
DFG2:

[DiscardGoods_s]
P

PFG1: not StoreInWarehouse.Me
and not ShipToConsumer.M1
and not Active(DiscardGoods)

P
PFG1: StoreInWarehouse.Me and

not DiscardGoods.M1
and not Active(ShipToConsumer)

Delivery

Outcome

M1: on MessageSent
if body:delivery_outcome

D
DFG1: on MessageSent

if body:delivery_outcome

PPFG1: EExc.M1
 and not DeliveryOutcome.M1

ShipTo
Terminal

D
DFG1:

[ShipToTerminal_s]
M1:
[ShipToTerminal_t]

PPFG1:Loop.M1 and not
ShipToTerminal.M1

StoreIn
Warehouse

D
DFG1:

[StoreInWarehouse_s]
M1:
[StoreInWarehouse_t]

FL1: on NewSensorValue
if Temperature: > 20°C

P
PFG1: ShipToTerminal.M1 and
not (StoreInWarehouse.M1 or

StoreInWarehouse.Me)

Me: on NewSensorValue
if Temperature: > 20°C

Faulty

Severity Outcome

(𝑆𝑦.o)

Compliance

(𝑆𝑧.c)
Status (𝑆𝑥.s)

Medium-

low

∃𝑆𝑦: 𝑆𝑦.o

= faulty

∀𝑆𝑧: 𝑆𝑧.c =

onTime

∀𝑆𝑥: 𝑆𝑥.s = unopened
∨ 𝑆𝑥.s = opened

∨ 𝑆𝑥.s = closed

© 2016 Luciano Baresi, Giovanni Meroni and Pierluigi Plebani

Validation

A catastrophic execution

• Cooling system of the

warehouse breaks down

• Goods are exposed to

high temperature and

are spoiled

• I ignores the

accident and gives

the goods to T

• T ships the goods

39

• Customer N receives

spoiled goods and gets

disappointed

• M must pick the spoiled

goods up at N site

• M must plan a new

shipping

• An even higher economic

loss is produced

• The reputation of M

decreases

• This execution is a

complete catastrophe!

© 2016 Luciano Baresi, Giovanni Meroni and Pierluigi Plebani

Validation

A catastrophic execution

• Cooling system of the

warehouse breaks down

• Goods are exposed to

high temperature and

are spoiled

• I ignores the

accident and gives

the goods to T

• T ships the goods

40

EExc

ShipTo

Consumer

M1:
[ShipToConsumer_t]

D
DFG1:

[ShipToConsumer_s]

Discard

Goods

M1:
[DiscardGoods_t]

D
DFG1:

[DiscardGoods_s]

M1: if
((ShipToConsumer.M1
and not
StoreInWarehouse.Me)
or (DiscardGoods.M1 and
StoreInWarehouse.Me))
and not
(Active(ShipToConsumer)
or Active(DiscardGoods))

D
DFG1:

[ShipToConsumer_s]

P
PFG1: (StoreInWarehouse.M1

or StoreInWarehouse.Me) and
not EExc.M1

D
DFG2:

[DiscardGoods_s]
P

PFG1: not StoreInWarehouse.Me
and not ShipToConsumer.M1
and not Active(DiscardGoods)

P
PFG1: StoreInWarehouse.Me and

not DiscardGoods.M1
and not Active(ShipToConsumer)

Delivery

Outcome

M1: on MessageSent
if body:delivery_outcome

D
DFG1: on MessageSent

if body:delivery_outcome

PPFG1: EExc.M1
 and not DeliveryOutcome.M1

ShipTo
Terminal

D
DFG1:

[ShipToTerminal_s]
M1:
[ShipToTerminal_t]

PPFG1:Loop.M1 and not
ShipToTerminal.M1

StoreIn
Warehouse

D
DFG1:

[StoreInWarehouse_s]
M1:
[StoreInWarehouse_t]

FL1: on NewSensorValue
if Temperature: > 20°C

P
PFG1: ShipToTerminal.M1 and
not (StoreInWarehouse.M1 or

StoreInWarehouse.Me)

Me: on NewSensorValue
if Temperature: > 20°C

Faulty

OutOfOrder

Severity Outcome

(𝑆𝑦.o)

Compliance

(𝑆𝑧.c)
Status (𝑆𝑥.s)

High ∃𝑆𝑦: 𝑆𝑦.o

= faulty

∃𝑆𝑧: 𝑆𝑧.c =

outOfOrder

∨ 𝑆𝑧.c =

skipped

∀𝑆𝑥: 𝑆𝑥.s = unopened
∨ 𝑆𝑥.s = opened

∨ 𝑆𝑥.s = closed

© 2016 Luciano Baresi, Giovanni Meroni and Pierluigi Plebani

Validation

A troublesome yet recoverable execution

• After loading the goods

into the container, R

begins shipping them

• No inventory is made

• If all the goods were

correctly located and

picked up, the process

concludes correctly

• If some goods were

missing, an additional

shipment must be planned

• This causes a moderate

economic loss

• This slightly decreases the

reputation of M

• No goods are lost

• The execution is incorrect,

yet recoverable.

41

© 2016 Luciano Baresi, Giovanni Meroni and Pierluigi Plebani

Validation

A troublesome yet recoverable execution

• After loading the goods

into the container, R

begins shipping them

• No inventory is made

42

Severity Outcome

(𝑆𝑦.o)

Compliance

(𝑆𝑧.c)
Status (𝑆𝑥.s)

Medium ∀𝑆𝑦: 𝑆𝑦.o

= regular

∃𝑆𝑧: 𝑆𝑧.c =

outOfOrder

∨ 𝑆𝑧.c =

skipped

∃𝑆𝑥: 𝑆𝑥.s = opened

Loop
Ite
Seq2

Load
Goods

D
DFG1:

[LoadGoods_s]
M1:
[LoadGoods_t]

Locate
Missing
GoodsP

PFG1: Seq2.M1 and
inventory!=shipment_req.BOM

 and not LocateMissingGoods.M1

M1: if Seq2.M1
and inventory=
shipment_req.BOM
and not Active(
LocateMissingGoods)

PPFG1: not Seq2.M1
M2: if Seq2.M1 and
CollectMissing
Goods.M1 and
inventory!=
shipment_req.BOM

M1: on
+Ite.M1

Shipment
Req

D
DFG1: on MessageReceived

if body:shipment_req
M1: on Message
if body:shipment_req

PPFG1: not
ShipmentReq.M1

Inventory

M1: on
MessageSent
if body:
inventory

D
DFG1: on MessageSent

if body:inventory

PPFG1: LoadGoods.M1
 and not Inventory.M1

PPFG1: not
LoadGoods.M1

D
DFG1:

[LoadGoods_s]

D

DFG2: on
MessageSent

if body:inventory

D
DFG1:

[LoadGoods_s]

D
DFG2: on

MessageSent
if body:inventory

D
DFG1:

[LocateMissingGoods_s]
M1:
[LocateMissingGoods_t]

D
DFG3: [Locate

MissingGoods_s]

M1: if
LoadGoods.M1
and Inventory.M1

D
DFG1:

[LoadGoods_s]

D
DFG2: on

MessageSent
if body:inventory

D
DFG3: [Locate

MissingGoods_s]

ShipTo
Terminal

D
DFG1:

[ShipToTerminal_s]
M1:
[ShipToTerminal_t]

PPFG1:Loop.M1 and not
ShipToTerminal.M1

P
PFG1:

ShipmentReq.M1
and not Loop.M1

OutOfOrder

© 2016 Luciano Baresi, Giovanni Meroni and Pierluigi Plebani

Conclusion

• E-GSM allows monitoring processes with respect to both

the control flow and the outcome of each activity

• Based on the violations that occur, it is possible to define

metrics to assess how severely the process is affected

• It is possible to automatically translate BPMN process

models into E-GSM:

• BPMN is well-known, easy to use and to understand

• No need to redesign existing processes from scratch

• The translation can be furtherly improved by considering

the type of activities and events, and the associated data

objects

• Metrics can be improved by associating weights to each

activity

43

© 2016 Luciano Baresi, Giovanni Meroni and Pierluigi Plebani

A POSTER ON THIS APPROACH WILL BE ALSO PRESENTED

AT CAISE FORUM 2016

THIS WORK HAS BEEN PARTIALLY FUNDED BY THE ITALIAN

PROJECT ITS2020 UNDER THE TECHNOLOGICAL NATIONAL

CLUSTERS PROGRAM

Thanks for your attention

Any question?

44

