

ICSOC 2017 Malaga – 14th November 2017

Giovanni Meroni, Claudio Di Ciccio and Jan Mendling AN ARTIFACT-DRIVEN APPROACH TO MONITOR BUSINESS PROCESSES THROUGH REAL-WORLD OBJECTS

- Organizations outsource internal processes to service providers
 - I.e.: freight transportation, supply chain, etc...
- Once internal processes become inter-organizational
- Stakeholders control only a portion of these processes
 - Cannot enforce the portion carried out by service providers
- Process monitoring becomes critical
 - Organizations can promptly react to violations by taking countermeasures

- Manufacturer **M** outsources logistics processes to logistics company **L**
- To ship goods to customer **C**, **L** organizes a four-legged shipment
 - M to TU, TU to HQ, HQ to TG, TG to C
 - Each leg carried out by a different truck shipper
 - No organization fully controls the process

© 2017 Giovanni Meroni, Claudio Di Ciccio, Jan Mendling

WIEN VIENNA UNIVERSITY O ECONOMICS

- Traditional BPMSs require human intervention when monitoring multi-party processes
 - The BPMS expects explicit notification when activities start or end
 - · When not automated, notifications must be sent manually
 - When a violation in the execution occurs, the BPMS stops until the issue is solved

- Idea: rely on physical objects participating in the process
 - Physical objects have visibility on the whole process
 - The state of the physical objects determines the activation and termination of activities
- Thank to the IoT, physical objects become "smart":
 - They can autonomously infer their state
 - A monitoring platform can be run on top of them

- Imperative process modeling languages not suited for autonomous monitoring
 - Dependencies among activities are prescriptive
 - When dependencies are violated, human intervention is required
- E-GSM (Extended-GSM) language is more flexible
 - Extension of Guard-Stage-Milestone declarative language
 - Dependencies are descriptive
 - Can deal with violations, detecting which activities are affected

- **Stages** represent activities and process portions
 - Stages can be nested
 - Atomic stages represent atomic tasks
- **Data Flow Guards** determine stage activation
- **Process Flow Guards** define stage dependencies
 - Evaluated when data flow guards are triggered, before the stage is • active
 - If not fulfilled, the stage is flagged as not respecting the model
- **Milestones** determine stage termination

- Identity of Smart Objects often known after the process started
- Smart Objects may participate to a portion of the process.
 - Information exchanged before/after that portion would be useless or misleading for the monitoring
- Rules to dynamically bind smart objects to the process are needed

- Adopting artifact-driven monitoring can be difficult
 - Process must be redesigned in E-GSM
 - E-GSM less intuitive than BPMN
 - Identity of smart objects needed
 - Binding rules (smart objects $\leftarrow \rightarrow$ process instance) needed
- Solution: guided approach starting from BPMN
 - Step 1: BPMN model enriched with objects
 - Step 2: enriched BPMN translated to E-GSM
 - Step 3: binding rules derived from enriched BPMN

- Data Objects adopted to represent smart objects
 - Data state indicates smart objects' conditions
- Data Objects connected to activities indicate when the activities are executed
 - Activity starts when all input data objects have the indicated state
 - Activity ends when all output data objects have the indicated state
- Data Objects connected to events indicate when the smart objects interact with the process
 - Start event: smart object starts interaction
 - End event: smart object stops interaction

Step 1 – Enriching BPMN with objects

Step 1 – Enriching BPMN with objects

POLITECNICO DI MILANO

CONOMICS

Step 2 – Generating the E-GSM model

- Following [1], BPMN process translated into E-GSM:
 - Process decomposed into nested blocks
 - Atomic activities and events translated to atomic stages
 - Blocks translated to nested stages embedding inner blocks
 - Process flow guards reflect the dependencies outlined in the BPMN model

[1] L. Baresi, G. Meroni, P. Plebani: Using the Guard-Stage-Milestone Notation for Monitoring BPMN-based Processes, BPMDS 2016 Proceedings

Step 2 – Generating the E-GSM model

© 2017 Giovanni Meroni, Claudio Di Ciccio, Jan Mendling

POLITECNICO DI MILANO

WIRTSCHAFTS UNIVERSITÄT WIEN VIENNA

CONOMICS

- The E-GSM model predicates on the state of *generic* smart objects (e.g., a truck)
- When the monitoring starts, they are replaced with specific smart objects (e.g., the truck with plate AB123XY)
- Criteria to map specific smart objects to generic ones derived from enriched BPMN model
 - Data objects connected to start events produce binding criteria
 - Data objects connected to end events produce unbinding criteria

Step 3 – Deriving mapping criteria

POLITECNICO DI MILANO

<Mapping>

<Artifact name="Container">

<BindingEvent id="shipment_started"/><UnbindingEvent id="shipment_ended"/>

</Artifact>

<a>Artifact name="Truck">

<BindingEvent id="tu_hq_started"/><UnbindingEvent id="tu_hq_ended"/>

</Artifact>

</Mapping>

- To prove the feasibility of artifact-driven monitoring, the SMARTifact platform was developed [2]
 - Configurable with REST API
 - Smart objects communicate to the platform with MQTT
 - E-GSM engine monitors the process
 - Event router forwards to E-GSM engine only relevant information

[2] L. Baresi, C. Di Ciccio, J. Mendling, G. Meroni, P. Plebani: mArtifact – an Artifact-driven Process Monitoring Platform, BPM Demo Track 2017 Proceedings

Validating artifact-driven monitoring

Detailed view Graphical view Information model Logs	Detailed view Graphical view In	nformation model Logs
Stage: LoadContainer State: closed Status: regular	DFG3 DFG5 DFG6 DFG7	DFG0 DFG1 DFG0 DFG1
Compliance: onTime Data guard: LoadContainer_dfg1 Value: false Sentry: ((GSM.isInfoModel("Truck","status","LhrStill"))) && GSM.isEventOccurring("Truck_e") Process guard: LoadContainer_pfg	DFG0 process_started	DFG0 TravelUK SequenceFlow_3 DFG0 TakeBreakUK SequenceFlow_13
Value: false Sentry: !(GSM.isMilestoneAchieved("LoadContainer_m1")) && GSM.isMilestoneAchieved("process_started_m1") Milestone: LoadContainer_m1 Value: true	LoadContainer DFG0 process_ended	ExclusiveGateway_1_iteration ExclusiveGateway_1
Sentry: ((GSM.isInfoModel("Truck","status","LhrMoving"))) && GSM.isEventOccurring("Truck_I")	DFG0 TakeChannelTunnel	
State: unopened Status: regular Compliance: skipped		DFGU TravelEU SequenceFlow_10 ExclusiveGateway_7_iteration

- Eight shipment processes provided by a large European logistics company
 - Amsterdam to London, Bruxelles, Paris, Frankfurt and vice-versa
- Two datasets related to 77 shipments
 - Dataset 1: position and speed of trucks (19966 entries)
 - Dataset 2: activation and termination of activities in shipment • processes, manually notified by truck drivers (815 entries)
- Dataset 1 was replayed on mArtifact
- The results of the monitoring were compared with Dataset 2
 - Over 93% of the shipments were correctly monitored \bullet
 - mArtifact detected more activities than manual notifications
 - The median detection delay was less than 5 minutes, while the \bullet processes lasted on average 533 minutes

CONOMICS

- Artifact-driven process monitoring can effectively monitor inter-organizational processes
 - IoT smart objects to detect execution of activities
 - Manual notifications no longer required
 - Violations detected at runtime
 - Continuous monitoring
- Guided approach to configure artifact-driven platform
 - BPMN process as starting point
 - E-GSM and binding criteria derived

An Artifact-driven Approach To Monitor **Business Processes Through Real-world Objects**

Thanks for your attention

Full article here:

THIS WORK HAS BEEN PARTIALLY FUNDED BY THE ITALIAN **PROJECT ITS2020 UNDER THE TECHNOLOGICAL NATIONAL CLUSTERS PROGRAM**

UNIONE EUROPEA Fondo europeo di sviluppo regionale

Ministero dell'Istruzione dell'Università e della Ricerca